Search results for "Theoretical Computer Science"
showing 10 items of 1151 documents
An effective extension of the applicability of alignment-free biological sequence comparison algorithms with Hadoop
2016
Alignment-free methods are one of the mainstays of biological sequence comparison, i.e., the assessment of how similar two biological sequences are to each other, a fundamental and routine task in computational biology and bioinformatics. They have gained popularity since, even on standard desktop machines, they are faster than methods based on alignments. However, with the advent of Next-Generation Sequencing Technologies, datasets whose size, i.e., number of sequences and their total length, is a challenge to the execution of alignment-free methods on those standard machines are quite common. Here, we propose the first paradigm for the computation of k-mer-based alignment-free methods for…
Parallel and Space-Efficient Construction of Burrows-Wheeler Transform and Suffix Array for Big Genome Data
2016
Next-generation sequencing technologies have led to the sequencing of more and more genomes, propelling related research into the era of big data. In this paper, we present ParaBWT, a parallelized Burrows-Wheeler transform (BWT) and suffix array construction algorithm for big genome data. In ParaBWT, we have investigated a progressive construction approach to constructing the BWT of single genome sequences in linear space complexity, but with a small constant factor. This approach has been further parallelized using multi-threading based on a master-slave coprocessing model. After gaining the BWT, the suffix array is constructed in a memory-efficient manner. The performance of ParaBWT has b…
QuBiLS-MAS, open source multi-platform software for atom- and bond-based topological (2D) and chiral (2.5D) algebraic molecular descriptors computati…
2017
Background In previous reports, Marrero-Ponce et al. proposed algebraic formalisms for characterizing topological (2D) and chiral (2.5D) molecular features through atom- and bond-based ToMoCoMD-CARDD (acronym for Topological Molecular Computational Design-Computer Aided Rational Drug Design) molecular descriptors. These MDs codify molecular information based on the bilinear, quadratic and linear algebraic forms and the graph-theoretical electronic-density and edge-adjacency matrices in order to consider atom- and bond-based relations, respectively. These MDs have been successfully applied in the screening of chemical compounds of different therapeutic applications ranging from antimalarials…
Identification of control targets in Boolean molecular network models via computational algebra
2015
Motivation: Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The pot…
Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs
2017
Detecting higher-order epistatic interactions in Genome-Wide Association Studies (GWAS) remains a challenging task in the fields of genetic epidemiology and computer science. A number of algorithms have recently been proposed for epistasis discovery. However, they suffer from a high computational cost since statistical measures have to be evaluated for each possible combination of markers. Hence, many algorithms use additional filtering stages discarding potentially non-interacting markers in order to reduce the overall number of combinations to be examined. Among others, Mutual Information Clustering (MIC) is a common pre-processing filter for grouping markers into partitions using K-Means…
A detailed experimental study of a DNA computer with two endonucleases
2017
Abstract Great advances in biotechnology have allowed the construction of a computer from DNA. One of the proposed solutions is a biomolecular finite automaton, a simple two-state DNA computer without memory, which was presented by Ehud Shapiro’s group at the Weizmann Institute of Science. The main problem with this computer, in which biomolecules carry out logical operations, is its complexity – increasing the number of states of biomolecular automata. In this study, we constructed (in laboratory conditions) a six-state DNA computer that uses two endonucleases (e.g. AcuI and BbvI) and a ligase. We have presented a detailed experimental verification of its feasibility. We described the effe…
Biomolecular computers with multiple restriction enzymes
2017
Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton t…
Accelerating metagenomic read classification on CUDA-enabled GPUs.
2016
Metagenomic sequencing studies are becoming increasingly popular with prominent examples including the sequencing of human microbiomes and diverse environments. A fundamental computational problem in this context is read classification; i.e. the assignment of each read to a taxonomic label. Due to the large number of reads produced by modern high-throughput sequencing technologies and the rapidly increasing number of available reference genomes software tools for fast and accurate metagenomic read classification are urgently needed. We present cuCLARK, a read-level classifier for CUDA-enabled GPUs, based on the fast and accurate classification of metagenomic sequences using reduced k-mers (…
An Integrative Framework for the Construction of Big Functional Networks
2018
We present a methodology for biological data integration, aiming at building and analysing large functional networks which model complex genotype-phenotype associations. A functional network is a graph where nodes represent cellular components (e.g., genes, proteins, mRNA, etc.) and edges represent associations among such molecules. Different types of components may cohesist in the same network, and associations may be related to physical[biochemical interactions or functional/phenotipic relationships. Due to both the large amount of involved information and the computational complexity typical of the problems in this domain, the proposed framework is based on big data technologies (Spark a…
DNA combinatorial messages and Epigenomics: The case of chromatin organization and nucleosome occupancy in eukaryotic genomes
2019
Abstract Epigenomics is the study of modifications on the genetic material of a cell that do not depend on changes in the DNA sequence, since those latter involve specific proteins around which DNA wraps. The end result is that Epigenomic changes have a fundamental role in the proper working of each cell in Eukaryotic organisms. A particularly important part of Epigenomics concentrates on the study of chromatin, that is, a fiber composed of a DNA-protein complex and very characterizing of Eukaryotes. Understanding how chromatin is assembled and how it changes is fundamental for Biology. In more than thirty years of research in this area, Mathematics and Theoretical Computer Science have gai…