Search results for "Theoretical Computer Science"
showing 10 items of 1151 documents
Immune networks: Multi-tasking capabilities at medium load
2013
Associative network models featuring multi-tasking properties have been introduced recently and studied in the low load regime, where the number $P$ of simultaneously retrievable patterns scales with the number $N$ of nodes as $P\sim \log N$. In addition to their relevance in artificial intelligence, these models are increasingly important in immunology, where stored patterns represent strategies to fight pathogens and nodes represent lymphocyte clones. They allow us to understand the crucial ability of the immune system to respond simultaneously to multiple distinct antigen invasions. Here we develop further the statistical mechanical analysis of such systems, by studying the medium load r…
The “ThreePlusOne” Likelihood-Based Test Statistics: Unified Geometrical and Graphical Interpretations
2014
The presentation of the well known Likelihood Ratio, Wald and Score test statistics in textbooks appears to lack a unified graphical and geometrical interpretation. We present two simple graphical representations on a common scale for these three test statistics, and also the recently proposed Gradient test statistic. These unified graphical displays may favour better understanding of the geometrical meaning of the likelihood based statistics and provide useful insights into their connections.
Long read alignment based on maximal exact match seeds
2012
Abstract Motivation: The explosive growth of next-generation sequencing datasets poses a challenge to the mapping of reads to reference genomes in terms of alignment quality and execution speed. With the continuing progress of high-throughput sequencing technologies, read length is constantly increasing and many existing aligners are becoming inefficient as generated reads grow larger. Results: We present CUSHAW2, a parallelized, accurate, and memory-efficient long read aligner. Our aligner is based on the seed-and-extend approach and uses maximal exact matches as seeds to find gapped alignments. We have evaluated and compared CUSHAW2 to the three other long read aligners BWA-SW, Bowtie2 an…
The 1970 US Draft Lottery Revisited: A Spatial Analysis
2004
Summary We revise the result of the 1970 selective service draft lottery in the USA following an open question that was suggested by Fienberg in a paper published in Science in 1971. The result of the drawings can be viewed as a particular spatial pattern which can be analysed by using general spatial tools adapted to our context. Approaches for assessing the complete spatial randomness for this spatial process on a finite support are proposed. More specifically, these approaches involve the number of events in a square window and a k(r)-based function used to analyse stationary spatial point processes.
SKINK: a web server for string kernel based kink prediction in α-helices
2014
Abstract Motivation: The reasons for distortions from optimal α-helical geometry are widely unknown, but their influences on structural changes of proteins are significant. Hence, their prediction is a crucial problem in structural bioinformatics. Here, we present a new web server, called SKINK, for string kernel based kink prediction. Extending our previous study, we also annotate the most probable kink position in a given α-helix sequence. Availability and implementation: The SKINK web server is freely accessible at http://biows-inf.zdv.uni-mainz.de/skink. Moreover, SKINK is a module of the BALL software, also freely available at www.ballview.org. Contact: benny.kneissl@roche.com
Selecting the tuning parameter in penalized Gaussian graphical models
2019
Penalized inference of Gaussian graphical models is a way to assess the conditional independence structure in multivariate problems. In this setting, the conditional independence structure, corresponding to a graph, is related to the choice of the tuning parameter, which determines the model complexity or degrees of freedom. There has been little research on the degrees of freedom for penalized Gaussian graphical models. In this paper, we propose an estimator of the degrees of freedom in $$\ell _1$$ -penalized Gaussian graphical models. Specifically, we derive an estimator inspired by the generalized information criterion and propose to use this estimator as the bias term for two informatio…
Gossip: The Architecture of SpreadPlots
2003
A spreadplot is a visualization that simultaneously shows several different views of a dataset or model. The individual views can be dynamic, can support high-interaction direct manipulation, and can be algebraically linked with each other, possibly via an underlying statistical model. Thus, when a data analyst changes the information shown in one view of a statistical model, the changes can be processed by the model and instantly represented in the other views. Spreadplots simplify the analyst's task when many different plots are relevant to the analysis at hand, as is the case in regression analysis, where there are many plots that can be used for model building and diagnosis. On the othe…
Bayesian Design of “Successful” Replications
2002
Replication of experiments is commonin applied research. However, systematic studies of the goals and motivations of a “replication” are rare. As a consequence, there does not seem to be a precise notion of what a “success” when replicating means. This article discusses some of the possible goals for replication; this leads to different (but precise) notions of “success” when replicating. Bayesian hierarchical models allow for a flexible and explicit incorporation of the assumed relationship among the experiments. Bayesian predictive distributions are a natural tool to compute the probability of the replication being successful, and hence to design the replication so that the probability of…
Basic networks: Definition and applications
2009
7 pages, 4 figures, 1 table.-- PMID: 19490867 [PubMed]
Achieving Unbounded Resolution inFinitePlayer Goore Games Using Stochastic Automata, and Its Applications
2012
Abstract This article concerns the sequential solution to a distributed stochastic optimization problem using learning automata and the Goore game (also referred to as the Gur game in the related literature). The amazing thing about our solution is that, unlike traditional methods, which need N automata (where N determines the degree of accuracy), in this article, we show that we can obtain arbitrary accuracy by recursively using only three automata. To be more specific, the Goore game (GG) introduced in Tsetlin (1973) has the fascinating property that it can be resolved in a completely distributed manner with no inter-communication between the players. The game has recently found applicati…