Search results for "Theoretical Computer Science"

showing 10 items of 1151 documents

The Hierarchical Continuous Pursuit Learning Automation for Large Numbers of Actions

2018

Part 10: Learning - Intelligence; International audience; Although the field of Learning Automata (LA) has made significant progress in the last four decades, the LA-based methods to tackle problems involving environments with a large number of actions are, in reality, relatively unresolved. The extension of the traditional LA (fixed structure, variable structure, discretized, and pursuit) to problems within this domain cannot be easily established when the number of actions is very large. This is because the dimensionality of the action probability vector is correspondingly large, and consequently, most components of the vector will, after a relatively short time, have values that are smal…

Theoretical computer scienceHierarchical learning automataHierarchy (mathematics)Learning automataComputer sciencePursuit learning automataPursuit LALearning Automata02 engineering and technologyEstimator-based LAProbability vectorField (computer science)020202 computer hardware & architectureLA with large number of actionsVariable (computer science)Operator (computer programming)Learning Automata (LA)Action (philosophy)0202 electrical engineering electronic engineering information engineeringEstimator-based learning automata[INFO]Computer Science [cs]020201 artificial intelligence & image processingHierarchical LACurse of dimensionality
researchProduct

Kolmogorov superposition theorem for image compression

2012

International audience; The authors present a novel approach for image compression based on an unconventional representation of images. The proposed approach is different from most of the existing techniques in the literature because the compression is not directly performed on the image pixels, but is rather applied to an equivalent monovariate representation of the wavelet-transformed image. More precisely, the authors have considered an adaptation of Kolmogorov superposition theorem proposed by Igelnik and known as the Kolmogorov spline network (KSN), in which the image is approximated by sums and compositions of specific monovariate functions. Using this representation, the authors trad…

Theoretical computer scienceImage compressionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technologySuperposition theoremE.4. CODING AND INFORMATION THEORY01 natural sciencesWavelet[ INFO.INFO-TI ] Computer Science [cs]/Image Processing0202 electrical engineering electronic engineering information engineering0101 mathematicsElectrical and Electronic EngineeringMathematicsPixel010102 general mathematicsWavelet transformcomputer.file_formatSpline (mathematics)[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Signal ProcessingJPEG 2000Kolmogorov superposition theorem020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionAlgorithmcomputerSoftwareData compressionImage compression
researchProduct

Incorporating hypothetical knowledge into the process of inductive synthesis

1996

The problem of inductive inference of functions from hypothetical knowledge is investigated in this paper. This type of inductive inference could be regarded as a generalization of synthesis from examples that can be directed not only by input/output examples but also by knowledge of, e. g., functional description's syntactic structure or assumptions about the process of function evaluation. We show that synthesis of this kind is possible by efficiently enumerating the hypothesis space and illustrate it with several examples.

Theoretical computer scienceInductive biasGeneralizationComputer scienceProcess (engineering)business.industrymedia_common.quotation_subjectSpace (commercial competition)Type (model theory)Inductive reasoningMachine learningcomputer.software_genreFunctional descriptionArtificial intelligenceFunction (engineering)businesscomputermedia_common
researchProduct

Which new semantic for new shapes?

2006

There are two innovations which have drastically changed the building process: the operational continuity of the design and construction phases, and the software allowing not only the representation but also the autonomous creation of complex shapes never before thought of just because they could not be represented. This last innovation gave rise to a new design paradigm whose tools, according to their supporters, are the most advanced fields of mathematics and information science. Some ways of using these new possibilities gave rise to a radical, problematic, change in the relationship net between the designer’s intentions, the shapes through which they express them (invented or self-gener…

Theoretical computer scienceInterpretation (philosophy)Architecture Structural design Digital architecture ConstructionContext (language use)Communication sourceRepresentation (arts)ArchitectureDigital architectureDesign paradigmObject (philosophy)Epistemology
researchProduct

A Problem Structuring Method

1991

Given a formal definition of problem and a formal definition of system, the equivalence between both concepts is studied. Considering a problem as a 3-tuple , where D is the set of possible data, R is the set of possible results, and P the set of conditions of the problem, classes of problems are constructed as combinations of types of data, types of results and types of conditions. For example, data can be either literal or numerical, either with uncertainty or not; conditions can be determined by rules, tables, equations, it may have uncertainty, etc. As a case of application it is outlined how some of the most common problems (knowledge representation, search, reasoning and planning, etc…

Theoretical computer scienceKnowledge representation and reasoningSystems theoryUncertain dataDynamic problemComputer scienceEquivalence (formal languages)StructuringData typeComputer Science::DatabasesFormal description
researchProduct

Geometric and conceptual knowledge representation within a generative model of visual perception

1989

A representation scheme of knowledge at both the geometric and conceptual levels is offered which extends a generative theory of visual perception. According to this theory, the perception process proceeds through different scene representations at various levels of abstraction. The geometric domain is modeled following the CSG (constructive solid geometry) approach, taking advantage of the geometric modelling scheme proposed by A. Pentland, based on superquadrics as representation primitives. Recursive Boolean combinations and deformations are considered in order to enlarge the scope of the representation scheme and to allow for the construction of real-world scenes. In the conceptual doma…

Theoretical computer scienceKnowledge representation and reasoningbusiness.industryMechanical Engineeringmedia_common.quotation_subjectMachine learningcomputer.software_genreIndustrial and Manufacturing EngineeringConstructive solid geometryGenerative modelGeometric designArtificial IntelligenceControl and Systems EngineeringSuperquadricsConceptual modelFrame (artificial intelligence)Artificial intelligenceElectrical and Electronic EngineeringRepresentation (mathematics)businesscomputerSoftwaremedia_commonMathematicsJournal of Intelligent and Robotic Systems
researchProduct

Some models of inductive syntactical synthesis from sample computations

2005

The paper is a survey of several models of inductive program synthesis from sample computations. Synthesis tools are basically syntactical: the synthesis is based on the detection of "regular" fragments related with "shuffled" arithmetical progressions. Input sample computations are supposed to be "representative": they have to "reflect" all loops occurring in the target program. Programs are synthesized in nontraditional form of "generalized" regular expressions having Cleene stars and unions for loops and CASE-like operators. However, if input samples are somehow "annotated" (we consider two different approaches), then loops can be synthesized in more traditional WHILE-form, where loop co…

Theoretical computer scienceLOOP (programming language)ComputationSample (material)Arithmetic functionRegular expressionProgram synthesisMathematics
researchProduct

On Utilizing Stochastic Non-linear Fractional Bin Packing to Resolve Distributed Web Crawling

2014

This paper deals with the extremely pertinent problem of web crawling, which is far from trivial considering the magnitude and all-pervasive nature of the World-Wide Web. While numerous AI tools can be used to deal with this task, in this paper we map the problem onto the combinatorially-hard stochastic non-linear fractional knapsack problem, which, in turn, is then solved using Learning Automata (LA). Such LA-based solutions have been recently shown to outperform previous state-of-the-art approaches to resource allocation in Web monitoring. However, the ever growing deployment of distributed systems raises the need for solutions that cope with a distributed setting. In this paper, we prese…

Theoretical computer scienceLearning automataBin packing problemComputer scienceWeb pageContinuous knapsack problemResource allocationDistributed web crawlingResource managementResource management (computing)Web crawler2014 IEEE 17th International Conference on Computational Science and Engineering
researchProduct

User Grouping and Power Allocation in NOMA Systems: A Reinforcement Learning-Based Solution

2020

In this paper, we present a pioneering solution to the problem of user grouping and power allocation in Non-Orthogonal Multiple Access (NOMA) systems. There are two fundamentally salient and difficult issues associated with NOMA systems. The first involves the task of grouping users together into the pre-specified time slots. The subsequent second phase augments this with the solution of determining how much power should be allocated to the respective users. We resolve this with the first reported Reinforcement Learning (RL)-based solution, which attempts to solve the partitioning phase of this issue. In particular, we invoke the Object Migration Automata (OMA) and one of its variants to re…

Theoretical computer scienceLearning automataComputer science020206 networking & telecommunications02 engineering and technologymedicine.diseaseTask (project management)AutomatonPower (physics)NomaSalient0202 electrical engineering electronic engineering information engineeringmedicineReinforcement learningGreedy algorithm
researchProduct

Combining finite learning automata with GSAT for the satisfiability problem

2010

A large number of problems that occur in knowledge-representation, learning, very large scale integration technology (VLSI-design), and other areas of artificial intelligence, are essentially satisfiability problems. The satisfiability problem refers to the task of finding a satisfying assignment that makes a Boolean expression evaluate to True. The growing need for more efficient and scalable algorithms has led to the development of a large number of SAT solvers. This paper reports the first approach that combines finite learning automata with the greedy satisfiability algorithm (GSAT). In brief, we introduce a new algorithm that integrates finite learning automata and traditional GSAT use…

Theoretical computer scienceLearning automataComputer scienceRandom walkSatisfiabilitySet (abstract data type)Artificial IntelligenceControl and Systems EngineeringMaximum satisfiability problemBenchmark (computing)Combinatorial optimizationBoolean expressionElectrical and Electronic EngineeringBoolean satisfiability problemAlgorithmEngineering Applications of Artificial Intelligence
researchProduct