Search results for "Theoretical Physics"
showing 10 items of 751 documents
From supersymmetric to non-supersymmetric black holes
2012
Methods similar to those used for obtaining supersymmetric black hole solutions can be employed to find also non-supersymmetric solutions. We briefly review some of them, with the emphasis on the non-extremal deformation ansatz of [1].
Two, three, many body systems involving mesons
2011
In this talk we show recent developments on few body systems involving mesons. We report on an approach to Faddeev equations using chiral unitary dynamics, where an explicit cancellation of the two body off shell amplitude with three body forces stemming from the same chiral Lagrangians takes place. This removal of the unphysical off shell part of the amplitudes is most welcome and renders the approach unambiguous, showing that only on shell two body amplitudes need to be used. Within this approach, systems of two mesons and one baryon are studied, reproducing properties of the low lying $1/2^+$ states. On the other hand we also report on multirho and $K^*$ multirho states which can be asso…
Causality constraint on bound states and scattering with zero-range force, or do perturbative pions deserve another chance?
2016
Deconfinement vs. chiral symmetry and higher representation matter
2012
The interplay of deconfinement and chiral symmetry restoration are considered in terms of effective theories. We generalize the earlier model studies by considering fermions in higher representations, and study the finite temperature phase diagrams of SU(2) and SU(3) gauge theories with two fermion flavors in fundamental, adjoint or two-index symmetric representations. We discuss our results in relation to recent lattice simulations on these theories and outline possible applications in the context of dynamical electroweak symmetry breaking.
Improved description of the pion-nucleon scattering phenomenology in covariant baryon chiral perturbation theory
2014
We highlight some of the recent advances in the application of chiral effective field theory (chiral EFT) with baryons to the $\pi N$ scattering process. We recall some problems that cast doubt on the applicability of chiral EFT to $\pi N$ and show how the relativistic formalism, once the $\Delta(1232)$-resonance is included as an explicit degree of freedom, solves these issues. Finally it is shown how this approach can be used to extract the $\sigma$-terms from phenomenological information.
Three-nucleon forces and the three-nucleon systems
1993
The basic principles and philosophy which have guided the area of few-nucleon physics are motivated and discussed. Recent advances have made it possible to solve accurately the Schrodinger (or Faddeev) equation for many of the configurations of the few-nucleon systems, A brief review is given of some of the results of these calculations, which also Indicate that one-pion exchange plays roughly the same role in binding these systems that it plays in electromagnetic meson-exchange currents. Finally, a qualitative discussion of chiral perturbation theory is presented, which highlights the role that chiral symmetry plays in the nuclear force. Three-body forces from different areas of physics ar…
A note on static metrics: the degenerate case
2013
We give the necessary and sufficient conditions for a 3-metric to be the adapted spatial metric of a static vacuum solution. This work accomplishes for the degenerate cases the already known study for the regular ones (Bartnik and Tod 2006 {\it Class. Quantum Grav.} {\bf 23} 569-571).
Indefinitely growing self-avoiding walk.
1985
We introduce a new random walk with the property that it is strictly self-avoiding and grows forever. It belongs to a different universality class from the usual self-avoiding walk. By definition the critical exponent $\ensuremath{\gamma}$ is equal to 1. To calculate the exponent $\ensuremath{\nu}$ of the mean square end-to-end distance we have performed exact enumerations on the square lattice up to 22 steps. This gives the value $\ensuremath{\nu}=0.57\ifmmode\pm\else\textpm\fi{}0.01$.
Towards an understanding of discrete ambiguities in truncated partial wave analyses
2017
It is well known that the observables in a single-channel scattering problem remain invariant once the amplitude is multiplied by an overall energy- and angle-dependent phase. This invariance is called the continuum ambiguity and acts on the infinite partial wave set. It has also long been known that, in the case of a truncated partial wave set, another invariance exists, originating from the replacement of the roots of partial wave amplitudes with their complex conjugate values. This discrete ambiguity is also known as the Omelaenko-Gersten-type ambiguity. In this paper, we show that for scalar particles, discrete ambiguities are just a subset of continuum ambiguities with a specific phase…
Distinct magnetotransport and orbital fingerprints of chiral bobbers
2019
While chiral magnetic skyrmions have been attracting significant attention in the past years, recently, a new type of a chiral particle emerging in thin films $-$ a chiral bobber $-$ has been theoretically predicted and experimentally observed. Here, based on theoretical arguments, we provide a clear pathway to utilizing chiral bobbers for the purposes of future spintronics by uncovering that these novel chiral states possess inherent transport fingerprints that allow for their unambiguous electrical detection in systems comprising several types of chiral states. We reveal that unique transport and orbital characteristics of bobbers root in the non-trivial magnetization distribution in the …