Search results for "Theoretical physics"

showing 10 items of 751 documents

Infrared facets of the three-gluon vertex

2021

We present novel lattice results for the form factors of the quenched three-gluon vertex of QCD, in two special kinematic configurations that depend on a single momentum scale. We consider three form factors, two associated with a classical tensor structure and one without tree-level counterpart, exhibiting markedly different infrared behaviors. Specifically, while the former display the typical suppression driven by a negative logarithmic singularity at the origin, the latter saturates at a small negative constant. These exceptional features are analyzed within the Schwinger-Dyson framework, with the aid of special relations obtained from the Slavnov-Taylor identities of the theory. The em…

High Energy Physics - TheoryNuclear and High Energy PhysicsQC1-999High Energy Physics::LatticeFOS: Physical sciencesThree-gluon vertexLattice QCD01 natural sciencesMomentumTheoretical physicsHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)SingularitySchwinger-Dyson equations0103 physical sciencesTensor010306 general physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsPhysicsHigh Energy Physics - Lattice (hep-lat)Lattice QCDQCDHigh Energy Physics - PhenomenologyLattice (module)High Energy Physics - Theory (hep-th)Vertex (curve)Constant (mathematics)Physics Letters B
researchProduct

On AdS7 stability

2019

AdS$_7$ supersymmetric solutions in type IIA have been classified, and they are infinitely many. Moreover, every such solution has a non-supersymmetric sister. In this paper, we study the perturbative and non-perturbative stability of these non-supersymmetric solutions, focusing on cases without orientifolds. Perturbatively, we first look at the KK spectrum of spin-2 excitations. This does not exhibit instabilities, but it does show that there is no separation of scales for either the BPS and the non-BPS case, thus proving for supersymmetric AdS$_7$ a well-known recent conjecture. We then use 7d gauged supergravity and a brane polarization computation to access part of the spectrum of KK sc…

High Energy Physics - TheoryNuclear and High Energy PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi Matematicistability: nonperturbativeComputationSuperstring VacuaType (model theory)AdS-CFT Correspondence01 natural sciencesInstabilityStability (probability)orientifoldmembrane modelTheoretical physicsHigh Energy Physics::Theory0103 physical sciencesexcited stateanti-de Sitterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysicsSupersymmetry BreakingpolarizationConjecture010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]hep-thbubbleSpectrum (functional analysis)Gauged supergravityHigh Energy Physics::PhenomenologyFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIBPSlcsh:QC770-798supergravityBranesupersymmetryAdS-CFT Correspondence Superstring Vacua Supersymmetry BreakingParticle Physics - TheoryJournal of High Energy Physics
researchProduct

Mathematical properties of nested residues and their application to multi-loop scattering amplitudes

2021

Journal of high energy physics 02(2), 112 (2021). doi:10.1007/JHEP02(2021)112

High Energy Physics - TheoryNuclear and High Energy PhysicscausalityComputationFeynman graphpoleFOS: Physical sciencesDuality (optimization)Mathematical proof01 natural sciences530Theoretical physicsHigh Energy Physics - Phenomenology (hep-ph)NLO Computations0103 physical sciencesddc:530lcsh:Nuclear and particle physics. Atomic energy. Radioactivitystructure010306 general physicsRepresentation (mathematics)Mathematical PhysicsPhysics010308 nuclear & particles physicsscattering amplitudeMathematical Physics (math-ph)QCD PhenomenologysingularityScattering amplitudeHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Iterated functionlcsh:QC770-798dualityGravitational singularityMathematical structure
researchProduct

Brane cosmology with an anisotropic bulk

2004

In the context of brane cosmology, a scenario where our universe is a 3+1-dimensional surface (the ``brane'') embedded in a five-dimensional spacetime (the ``bulk''), we study geometries for which the brane is anisotropic - more specifically Bianchi I - though still homogeneous. We first obtain explicit vacuum bulk solutions with anisotropic three-dimensional spatial slices. The bulk is assumed to be empty but endowed with a negative cosmological constant. We then embed Z_2-symmetric branes in the anisotropic spacetimes and discuss the constraints on the brane energy-momentum tensor due to the five-dimensional anisotropic geometry. We show that if the bulk is static, an anisotropic brane ca…

High Energy Physics - TheoryNuclear and High Energy Physicsmedia_common.quotation_subjectFOS: Physical sciencesContext (language use)Perfect fluidGeneral Relativity and Quantum Cosmology (gr-qc)Cosmological constantAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyTheoretical physicsGeneral Relativity and Quantum Cosmology0103 physical sciencesBrane cosmologyTensor010306 general physicsmedia_commonPhysicsSpacetimeExtra Large Dimensions010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Astrophysics (astro-ph)Cosmology of Theories beyond the SMUniverseHigh Energy Physics - Theory (hep-th)Brane
researchProduct

Pinch Technique: Theory and Applications

2009

We review the theoretical foundations and the most important physical applications of the Pinch Technique (PT). This general method allows the construction of off-shell Green’s functions in non-Abelian gauge theories that are independent of the gauge-fixing parameter and satisfy ghost-free Ward identities. We first present the diagrammatic formulation of the technique in QCD, deriving, at one loop, the gauge independent gluon self-energy, quark–gluon vertex, and three-gluon vertex, together with their Abelian Ward identities. The generalization of the PT to theories with spontaneous symmetry breaking is carried out in detail, and the profound connection with the optical theorem and the disp…

High Energy Physics - TheoryParticle physicsSpontaneous symmetry breakingGluonsHigh Energy Physics::LatticeFOS: Physical sciencesGeneral Physics and AstronomyDynamical mass generationGauge-invarianceSchwinger–Dyson equationsRenormalizationTheoretical physicsQuantization (physics)symbols.namesakeHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)Non-Abelian gauge theoriesFeynman diagramGauge theoryGauge bosonsQuantum chromodynamicsPhysicsBackground field methodGreens functionsElectroweak interactionHigh Energy Physics::PhenomenologyFísicaHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)symbols
researchProduct

Instability of black holes in massive gravity

2013

We show that linear perturbations around the simplest black hole solution of massive bi-gravity theories, the bi-Schwarzschild solution, exhibit an unstable mode featuring the Gregory-Laflamme instability of higher dimensional black strings. The result is obtained for the massive gravity theory which is free from the Boulware-Deser ghost, as well as for its extension with two dynamical metrics. These results may indicate that static black holes in massive gravity do not exist. For the graviton mass of the order of the Hubble scale, however, the instability timescale is of order of the Hubble time.

High Energy Physics - TheoryPhysics and Astronomy (miscellaneous)Field (physics)Scale (ratio)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFieldGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesInstabilityGeneral Relativity and Quantum CosmologyTheoretical physicsHigh Energy Physics::TheoryGeneral Relativity and Quantum Cosmology0103 physical sciencesBlack stringStrings010306 general physicsPhysics010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]GravitonP-BranesBlack holeMassive gravityHigh Energy Physics - Theory (hep-th)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
researchProduct

Computing black hole entropy in loop quantum gravity from a conformal field theory perspective

2009

Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity.

High Energy Physics - TheoryPhysics010308 nuclear & particles physicsConformal field theoryAstrophysics::High Energy Astrophysical PhenomenaGravityFOS: Physical sciencesAstronomy and AstrophysicsConformal mapGeneral Relativity and Quantum Cosmology (gr-qc)Loop quantum gravity01 natural sciencesGeneral Relativity and Quantum CosmologyBlack holeQuantum black holesHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyTheoretical physicsHigh Energy Physics - Theory (hep-th)0103 physical sciences010306 general physicsBlack hole thermodynamicsEntropy (arrow of time)Journal of Cosmology and Astroparticle Physics
researchProduct

Acceleration radiation, transition probabilities, and trans-Planckian physics

2010

An important question in the derivation of the acceleration radiation, which also arises in Hawking's derivation of black hole radiance, is the need to invoke trans-Planckian physics in describing the creation of quanta. We point out that this issue can be further clarified by reconsidering the analysis in terms of particle detectors, transition probabilities and local two-point functions. By writing down separate expressions for the spontaneous-and induced-transition probabilities of a uniformly accelerated detector, we show that the bulk of the effect comes from the natural (non-trans-Planckian) scale of the problem, which largely diminishes the importance of the trans-Planckian sector. T…

High Energy Physics - TheoryPhysicsAstrofísicaPhysics::General Physics010308 nuclear & particles physicsGeneral Physics and AstronomyFOS: Physical sciencesAcceleration (differential geometry)Scale (descriptive set theory)General Relativity and Quantum Cosmology (gr-qc)RadiationLorentz covariance01 natural sciencesGeneral Relativity and Quantum CosmologyPartícules (Física nuclear)Black holeTheoretical physicsHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyHawkingHigh Energy Physics - Theory (hep-th)0103 physical sciencesRadianceQuantum field theory010306 general physics
researchProduct

Mapping Ricci-based theories of gravity into general relativity

2018

We show that the space of solutions of a wide family of Ricci-based metric-affine theories of gravity can be put into correspondence with the space of solutions of general relativity (GR). This allows us to use well-established methods and results from GR to explore new gravitational physics beyond it.

High Energy Physics - TheoryPhysicsClass (set theory)Gravity (chemistry)010308 nuclear & particles physicsGeneral relativityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Space (mathematics)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationTheoretical physicsHigh Energy Physics - Theory (hep-th)0103 physical sciences010306 general physics
researchProduct

Background Independent Field Quantization with Sequences of Gravity-Coupled Approximants

2020

We outline, test, and apply a new scheme for nonpertubative analyses of quantized field systems in contact with dynamical gravity. While gravity is treated classically in the present paper, the approach lends itself for a generalization to full Quantum Gravity. We advocate the point of view that quantum field theories should be regularized by sequences of quasi-physical systems comprising a well defined number of the field's degrees of freedom. In dependence on this number, each system backreacts autonomously and self-consistently on the gravitational field. In this approach, the limit which removes the regularization automatically generates the physically correct spacetime geometry, i.e., …

High Energy Physics - TheoryPhysicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyQuantization (physics)Theoretical physicsGeneral Relativity and Quantum CosmologyGravitational fieldHigh Energy Physics - Theory (hep-th)Quantum stateQuantum gravityQuantum field theoryScalar fieldQuantum fluctuationCosmological constant problem
researchProduct