Search results for "Theoretical physics"
showing 10 items of 751 documents
Infrared facets of the three-gluon vertex
2021
We present novel lattice results for the form factors of the quenched three-gluon vertex of QCD, in two special kinematic configurations that depend on a single momentum scale. We consider three form factors, two associated with a classical tensor structure and one without tree-level counterpart, exhibiting markedly different infrared behaviors. Specifically, while the former display the typical suppression driven by a negative logarithmic singularity at the origin, the latter saturates at a small negative constant. These exceptional features are analyzed within the Schwinger-Dyson framework, with the aid of special relations obtained from the Slavnov-Taylor identities of the theory. The em…
On AdS7 stability
2019
AdS$_7$ supersymmetric solutions in type IIA have been classified, and they are infinitely many. Moreover, every such solution has a non-supersymmetric sister. In this paper, we study the perturbative and non-perturbative stability of these non-supersymmetric solutions, focusing on cases without orientifolds. Perturbatively, we first look at the KK spectrum of spin-2 excitations. This does not exhibit instabilities, but it does show that there is no separation of scales for either the BPS and the non-BPS case, thus proving for supersymmetric AdS$_7$ a well-known recent conjecture. We then use 7d gauged supergravity and a brane polarization computation to access part of the spectrum of KK sc…
Mathematical properties of nested residues and their application to multi-loop scattering amplitudes
2021
Journal of high energy physics 02(2), 112 (2021). doi:10.1007/JHEP02(2021)112
Brane cosmology with an anisotropic bulk
2004
In the context of brane cosmology, a scenario where our universe is a 3+1-dimensional surface (the ``brane'') embedded in a five-dimensional spacetime (the ``bulk''), we study geometries for which the brane is anisotropic - more specifically Bianchi I - though still homogeneous. We first obtain explicit vacuum bulk solutions with anisotropic three-dimensional spatial slices. The bulk is assumed to be empty but endowed with a negative cosmological constant. We then embed Z_2-symmetric branes in the anisotropic spacetimes and discuss the constraints on the brane energy-momentum tensor due to the five-dimensional anisotropic geometry. We show that if the bulk is static, an anisotropic brane ca…
Pinch Technique: Theory and Applications
2009
We review the theoretical foundations and the most important physical applications of the Pinch Technique (PT). This general method allows the construction of off-shell Green’s functions in non-Abelian gauge theories that are independent of the gauge-fixing parameter and satisfy ghost-free Ward identities. We first present the diagrammatic formulation of the technique in QCD, deriving, at one loop, the gauge independent gluon self-energy, quark–gluon vertex, and three-gluon vertex, together with their Abelian Ward identities. The generalization of the PT to theories with spontaneous symmetry breaking is carried out in detail, and the profound connection with the optical theorem and the disp…
Instability of black holes in massive gravity
2013
We show that linear perturbations around the simplest black hole solution of massive bi-gravity theories, the bi-Schwarzschild solution, exhibit an unstable mode featuring the Gregory-Laflamme instability of higher dimensional black strings. The result is obtained for the massive gravity theory which is free from the Boulware-Deser ghost, as well as for its extension with two dynamical metrics. These results may indicate that static black holes in massive gravity do not exist. For the graviton mass of the order of the Hubble scale, however, the instability timescale is of order of the Hubble time.
Computing black hole entropy in loop quantum gravity from a conformal field theory perspective
2009
Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity.
Acceleration radiation, transition probabilities, and trans-Planckian physics
2010
An important question in the derivation of the acceleration radiation, which also arises in Hawking's derivation of black hole radiance, is the need to invoke trans-Planckian physics in describing the creation of quanta. We point out that this issue can be further clarified by reconsidering the analysis in terms of particle detectors, transition probabilities and local two-point functions. By writing down separate expressions for the spontaneous-and induced-transition probabilities of a uniformly accelerated detector, we show that the bulk of the effect comes from the natural (non-trans-Planckian) scale of the problem, which largely diminishes the importance of the trans-Planckian sector. T…
Mapping Ricci-based theories of gravity into general relativity
2018
We show that the space of solutions of a wide family of Ricci-based metric-affine theories of gravity can be put into correspondence with the space of solutions of general relativity (GR). This allows us to use well-established methods and results from GR to explore new gravitational physics beyond it.
Background Independent Field Quantization with Sequences of Gravity-Coupled Approximants
2020
We outline, test, and apply a new scheme for nonpertubative analyses of quantized field systems in contact with dynamical gravity. While gravity is treated classically in the present paper, the approach lends itself for a generalization to full Quantum Gravity. We advocate the point of view that quantum field theories should be regularized by sequences of quasi-physical systems comprising a well defined number of the field's degrees of freedom. In dependence on this number, each system backreacts autonomously and self-consistently on the gravitational field. In this approach, the limit which removes the regularization automatically generates the physically correct spacetime geometry, i.e., …