Search results for "Theoretical physics"

showing 10 items of 751 documents

Unified description of seagull cancellations and infrared finiteness of gluon propagators

2016

We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent lattice simulations. Our analysis is manifestly gauge-invariant, in the sense that it preserves the transversality of the gluon self-energy, and gauge-independent, given that the conclusions do not depend on the choice of the gauge-fixing parameter within the linear covariant gauges. The central construction relies crucially on the subtle interplay between the Abelian Ward identities satisfied by the nonperturbative vertices and a special integral i…

High Energy Physics - TheoryPhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyMass generationFOS: Physical sciencesPropagatorInvariant (physics)01 natural sciencesGluonMassless particleHigh Energy Physics - PhenomenologyHigh Energy Physics::TheoryTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeHigh Energy Physics - Theory (hep-th)0103 physical sciencesCovariant transformation010306 general physicsGluon fieldGauge symmetryPhysical Review D
researchProduct

Constraining inverse-curvature gravity with supernovae

2005

We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dar…

High Energy Physics - TheoryPhysicsPhantom energyAstrophysics (astro-ph)FOS: Physical sciencesGeneral Physics and AstronomyBig RipGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGeneral Relativity and Quantum CosmologyParticle horizonMetric expansion of spaceTheoretical physicsHigh Energy Physics - Theory (hep-th)De Sitter universeZero-energy universeFlatness problemScale factor (cosmology)
researchProduct

Comment on `Critical scalar field collapse in AdS$_3$: an analytical approach'

2014

We comment on the derivation of an analytical solution presented in arXiv:1309.1629, show that it belongs to a family of separable solutions previously constructed in arXiv:gr-qc/0109002, and question its relevance to critical collapse.

High Energy Physics - TheoryPhysicsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsCollapse (topology)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologySeparable spaceTheoretical physicsHigh Energy Physics - Theory (hep-th)0103 physical sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]010306 general physicsScalar field
researchProduct

Quantum Effects in Black Holes from the Schwarzschild Black String?

2007

The holographic conjecture for black holes localized on a 3-brane in Randall-Sundrum braneworld models RS2 predicts the existence of a classical 5D time dependent solution dual to a 4D evaporating black hole. After briefly reviewing recent criticism and presenting some difficulties in the holographic interpretation of the Gregory-Laflamme instability, we simulate some basic features of such a solution by studying null geodesics of the Schwarzschild black string, in particular those propagating nontrivially in the bulk, and using holographic arguments.

High Energy Physics - TheoryPhysicsPhysics and Astronomy (miscellaneous)GeodesicAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyCosmologyBlack holeTheoretical physicsGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Randall–Sundrum modelBlack stringSchwarzschild metricSchwarzschild radius
researchProduct

Quantum nonlocality in extended theories of gravity

2020

We investigate how pure-state Einstein-Podolsky-Rosen correlations in the internal degrees of freedom of massive particles are affected by a curved spacetime background described by extended theories of gravity. We consider models for which the corrections to the Einstein-Hilbert action are quadratic in the curvature invariants and we focus on the weak-field limit. We quantify nonlocal quantum correlations by means of the violation of the Clauser-Horne-Shimony-Holt inequality, and show how a curved background suppresses the violation by a leading term due to general relativity and a further contribution due to the corrections to Einstein gravity. Our results can be generalized to massless p…

High Energy Physics - TheoryPhysicsQuantum PhysicsGravity (chemistry)Spacetime010308 nuclear & particles physicsGeneral relativityDegrees of freedom (physics and chemistry)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Quantum PhysicsCurvature01 natural sciencesGeneral Relativity and Quantum CosmologyMassless particleGeneral Relativity and Quantum CosmologyTheoretical physicsQuantum nonlocalityHigh Energy Physics - Theory (hep-th)0103 physical sciencesQuantum Physics (quant-ph)010306 general physicsQuantum
researchProduct

The geometry of branes and extended superspaces

1999

We argue that a description of supersymmetric extended objects from a unified geometric point of view requires an enlargement of superspace. To this aim we study in a systematic way how superspace groups and algebras arise from Grassmann spinors when these are assumed to be the only primary entities. In the process, we recover generalized spacetime superalgebras and extensions of supersymmetry found earlier. The enlargement of ordinary superspace with new parameters gives rise to extended superspace groups, on which manifestly supersymmetric actions may be constructed for various types of p-branes, including D-branes (given by Chevalley-Eilenberg cocycles) with their Born-Infeld fields. Thi…

High Energy Physics - TheoryPhysicsQuantum PhysicsNuclear and High Energy PhysicsSpinorSpacetimeFOS: Physical sciencesField (mathematics)Mathematical Physics (math-ph)SupersymmetrySuperspaceGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheoryTheoretical physicsHigh Energy Physics - Theory (hep-th)Brane cosmologylcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityPoint (geometry)BraneQuantum Physics (quant-ph)Mathematical PhysicsNuclear Physics B
researchProduct

QCD effective charge from the three-gluon vertex of the background-field method

2013

In this article we study in detail the prospects of determining the infrared finite QCD effective charge from a special kinematic limit of the vertex function corresponding to three background gluons. This particular Green's function satisfies a QED-like Ward identity, relating it to the gluon propagator, with no reference to the ghost sector. Consequently, its longitudinal form factors may be expressed entirely in terms of the corresponding gluon wave function, whose inverse is proportional to the effective charge. After reviewing certain important theoretical properties, we consider a typical lattice quantity involving this vertex, and derive its exact dependence on the various form facto…

High Energy Physics - TheoryPhysicsQuantum chromodynamicsNuclear and High Energy PhysicsDynamical symmetry breakingBackground field methodHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFísicaFOS: Physical sciencesVertex functionPropagatorEffective nuclear chargeVertex (geometry)GluonHigh Energy Physics - PhenomenologyTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeHigh Energy Physics - Theory (hep-th)Quantum electrodynamicsQuantum ChromodynamicsWave functionPhysical Review D
researchProduct

Critical behavior of a supersymmetric extension of the Ginzburg-Landau model

2011

We make a connection between quantum phase transitions in condensed matter systems, and supersymmetric gauge theories that are of interest in the particle physics literature. In particular, we point out interesting effects of the supersymmetric quantum electrodynamics upon the critical behavior of the Ginzburg-Landau model. It is shown that supersymmetry fixes the critical exponents, as well as the Landau-Ginzburg parameter, and that the model resides in the type II regime of superconductivity.

High Energy Physics - TheoryPhysicsQuantum phase transitionSuperconductivityHigh Energy Physics::PhenomenologyFOS: Physical sciencesSupersymmetryConnection (mathematics)Theoretical physicsHigh Energy Physics::TheoryExtension (metaphysics)High Energy Physics - Theory (hep-th)Condensed Matter::SuperconductivityGauge theoryCritical exponentGinzburg landau
researchProduct

Mapping of Composite Hadrons into Elementary Hadrons and Effective Hadronic Hamiltonians

1998

A mapping technique is used to derive in the context of constituent quark models effective Hamiltonians that involve explicit hadron degrees of freedom. The technique is based on the ideas of mapping between physical and ideal Fock spaces and shares similarities with the quasiparticle method of Weinberg. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, hermitian Hamiltonians with a clear physical interpre…

High Energy Physics - TheoryPhysicsQuarkParticle physicsNuclear TheoryHigh Energy Physics::PhenomenologyNuclear TheoryHadronQuark modelFOS: Physical sciencesGeneral Physics and AstronomyConstituent quarkUnitary transformationHermitian matrixFock spaceNuclear Theory (nucl-th)High Energy Physics - PhenomenologyTheoretical physicssymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)symbolsHamiltonian (quantum mechanics)Annals of Physics
researchProduct

Generalized Slow Roll in the Unified Effective Field Theory of Inflation

2017

We provide a compact and unified treatment of power spectrum observables for the effective field theory (EFT) of inflation with the complete set of operators that lead to second-order equations of motion in metric perturbations in both space and time derivatives, including Horndeski and GLPV theories. We relate the EFT operators in ADM form to the four additional free functions of time in the scalar and tensor equations. Using the generalized slow roll formalism, we show that each power spectrum can be described by an integral over a single source that is a function of its respective sound horizon. With this correspondence, existing model independent constraints on the source function can b…

High Energy Physics - TheoryPhysicsSource functionCosmology and Nongalactic Astrophysics (astro-ph.CO)Slow rollSpacetime010308 nuclear & particles physicsScalar (mathematics)Spectral densityEquations of motionFOS: Physical sciencesObservableGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyTheoretical physicsClassical mechanicsHigh Energy Physics - Theory (hep-th)0103 physical sciencesEffective field theory010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct