Search results for "Therm"

showing 10 items of 7973 documents

The complementary structural studies of the double metal cyanide type catalysts for the ring opening polymerization of the oxiranes

2016

010407 polymersPolymers and PlasticsChemistryGeneral Chemical EngineeringCyanideInorganic chemistryDouble metal010402 general chemistry01 natural sciencesRing-opening polymerization0104 chemical sciencesCatalysischemistry.chemical_compoundMaterials ChemistryThermal analysisPolimery
researchProduct

Geographic and temporal variations in turbulent heat loss from lakes : A global analysis across 45 lakes

2018

Heat fluxes at the lake surface play an integral part in determining the energy budget and thermal structure in lakes, including regulating how lakes respond to climate change. We explore patterns in turbulent heat fluxes, which vary across temporal and spatial scales, using in situ high-frequency monitoring data from 45 glob- ally distributed lakes. Our analysis demonstrates that some of the lakes studied follow a marked seasonal cycle in their turbulent surface fluxes and that turbulent heat loss is highest in larger lakes and those situated at low latitude. The Bowen ratio, which is the ratio of mean sensible to mean latent heat fluxes, is smaller at low lati- tudes and, in turn, the rel…

010504 meteorology & atmospheric sciences0208 environmental biotechnologyta1172ta1171Climate change02 engineering and technologyAquatic ScienceOceanographyAtmospheric sciences01 natural sciencesjärvetLatitudeWater balanceheat fluxesLatent heatparasitic diseaseslakesBowen ratioturbulent heat loss0105 earth and related environmental sciencesthermal structurelake surface15. Life on landilmastonmuutoksetEnergy budget020801 environmental engineeringclimate change13. Climate actionHeat transferarticlesEnvironmental scienceSpatial variabilitylämpötilaenergy budgetlämpöhäviöLimnology and Oceanography
researchProduct

Understanding the SO 2 degassing budget of Mt Etna’s paroxysms: First clues from the december 2015 sequence

2019

The persistent open-vent activity of basaltic volcanoes is periodically interrupted by spectacular but hazardous paroxysmal explosions. The rapid transition from quiescence to explosive eruption poses a significant challenge for volcanic hazard assessment and mitigation, and improving our understanding of the processes that trigger these paroxysmal events is critical. Although magmatic gas is unquestionably the driver, direct measurements of a paroxysm’s gas flux budget have remained challenging, to date. A particularly violent paroxysmal sequence took place on Etna on December 2015, intermittently involving all summit craters, especially the Voragine (VOR) that had previously displayed no…

010504 meteorology & atmospheric sciences2Earth and Planetary Sciences(all)UV camera010502 geochemistry & geophysics01 natural sciencesSequence (geology)Basaltic paroxysmsImpact craterBasaltic paroxysms; Etna; OMI; Thermal remote sensing; UV camera; Volcanic SO ; 2High spatial resolutionlcsh:ScienceThermal remote sensing0105 earth and related environmental sciences/dk/atira/pure/subjectarea/asjc/1900BasaltVolcanic SOgeographygeography.geographical_feature_categoryOMIGas fluxBasaltic paroxysmEtna volcanoVolcanoMagmavolcanic SO2General Earth and Planetary SciencesEtnalcsh:QSeismologyGeology
researchProduct

A coronal explosion on the flare star CN Leonis

2008

We present simultaneous high-temporal and high-spectral resolution observations at optical and soft X-ray wavelengths of the nearby flare star CN Leo. During our observing campaign a major flare occurred, raising the star's instantaneous energy output by almost three orders of magnitude. The flare shows the often observed impulsive behavior, with a rapid rise and slow decay in the optical and a broad soft X-ray maximum about 200 seconds after the optical flare peak. However, in addition to this usually encountered flare phenomenology we find an extremely short (~2 sec) soft X-ray peak, which is very likely of thermal, rather than non-thermal nature and temporally coincides with the optical …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesThermalCoronal heatingAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsAstrophysics (astro-ph)Flare starX-rays: stars stars: individual: CN Leo stars: flares stars: coronae stars: activityAstronomy and AstrophysicsX-rays; individual; CN Leo; flares; coronae; stars; activityInstantaneous energyWavelengthSpace and Planetary ScienceRapid riseCoronal planePhysics::Space PhysicsFlare
researchProduct

A roadmap for amphibious drilling at the Campi Flegrei caldera: insights from a MagellanPlus workshop

2019

Large calderas are among the Earth's major volcanic features. They are associated with large magma reservoirs and elevated geothermal gradients. Caldera-forming eruptions result from the withdrawal and collapse of the magma chambers and produce large-volume pyroclastic deposits and later-stage deformation related to post-caldera resurgence and volcanism. Unrest episodes are not always followed by an eruption; however, every eruption is preceded by unrest. The Campi Flegrei caldera (CFc), located along the eastern Tyrrhenian coastline in southern Italy, is close to the densely populated area of Naples. It is one of the most dangerous volcanoes on Earth and represents a key example of an acti…

010504 meteorology & atmospheric sciencesCalderasGeochemistryEnergy Engineering and Power TechnologyPyroclastic rockVolcanologyMagma chamberVolcanism010502 geochemistry & geophysics01 natural sciencesdrillingsouthern ItalycalderaCaldera14. Life underwater0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryMechanical Engineeringlcsh:QE1-996.5VolcanologyMagellanPlus workshopInternational Ocean Discovery Programlcsh:GeologyCampi Flegrei calderaVolcanoItaly13. Climate actionEruptionMagmacaldera Campi Flegrei monitopring system hydrothermal system IODPCampi FlegreiGeology
researchProduct

Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy)

2021

Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance consideration…

010504 meteorology & atmospheric sciencesCampi Flegrei mantle geochemistry CO2 emission Fumarole compositions Hydrothermal systems Volcanic unrest Volcano seismicityInduced seismicity010502 geochemistry & geophysics01 natural sciencesHydrothermal circulationHydrothermal systemsCabin pressurizationGeochemistry and PetrologyCalderaPetrologyFumarole compositions0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryVolcanic unrest; Hydrothermal systems; Campi Flegrei; Fumarole compositions; CO2 emission; Volcano seismicityFront (oceanography)Volcano seismicityGeophysicsVolcanoVolume (thermodynamics)Volcanic unrestCO2 emissionMagmaCampi FlegreiGeology
researchProduct

The Influence of Crystal Size Distributions on the Rheology of Magmas: New Insights From Analog Experiments

2017

This study examines the influence of particle size distributions on the rheology of particle suspensions by using analogue experiments with spherical glass beads in silicone oil as magma equivalent. The analyses of 274 individual particle-bearing suspensions of varying modality (uni-, bi- tri- and tetramodality), as well as of polymodal suspensions with specific defined skewness and variance, are the first data set of its kind and provide important insights in the relationship between the solid particles of a suspension and its rheological behaviour. Since the relationship between the rheology of particle bearing suspensions and its maximum packing fraction ϕm is well established by several…

010504 meteorology & atmospheric sciencesDispersityMineralogyThermodynamics010502 geochemistry & geophysicsAtomic packing factor01 natural sciencesViscosityGeophysicsRheologyGeochemistry and PetrologyParticle-size distributionParticleParticle sizeSuspension (vehicle)Geology0105 earth and related environmental sciencesGeochemistry, Geophysics, Geosystems
researchProduct

Magma extrusion during the Ubinas 2013-2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

2015

International audience; After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intr…

010504 meteorology & atmospheric sciencesExplosive materialLava010502 geochemistry & geophysics01 natural sciencesImpact craterGeochemistry and PetrologyThermal[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyThermal anomalies0105 earth and related environmental sciencesHot springgeographygeography.geographical_feature_categoryExtrusion rates; earthquake; MIROVA; Thermal anomalies; Ubinas; Geochemistry and Petrology; GeophysicsMIROVAGeophysicsVolcano13. Climate actionUbinasearthquakeMagmaSatelliteExtrusion ratesSeismologyGeology
researchProduct

Using Optical and Thermal Data for Tracking Snowmelt Processes in Alpine Area

2019

Alpine catchments represent a fundamental reservoir of fresh water at midlatitude. Remote sensing offers the opportunity to estimate snow properties in the optical, thermal and microwave domains. In particular, the possibility to estimate snow density from remote sensing is relevant and still represents a great challenge for the remote sensing scientific community. Since changes of snow density and liquid water content occur continuously in the snowpack, spatial and temporal patterns of optical and thermal data can give information about snowmelt processes. The main goal of this study is to evaluate if snow thermal inertia can be an indicator of snowmelt processes and to evaluate its relati…

010504 meteorology & atmospheric sciencesFIS/06 - FISICA PER IL SISTEMA TERRA E PER IL MEZZO CIRCUMTERRESTREGEO/04 - GEOGRAFIA FISICA E GEOMORFOLOGIA0207 environmental engineeringGEO/12 - OCEANOGRAFIA E FISICA DELL'ATMOSFERA02 engineering and technologySnowpackTracking (particle physics)Snow01 natural sciencesGEO/11 - GEOFISICA APPLICATAGEO/10 - GEOFISICA DELLA TERRA SOLIDARemote sensing (archaeology)Liquid water contentMiddle latitudesSnowmeltThermalEnvironmental science020701 environmental engineeringRemote Sensing Snow Thermal Inertia Snowmelt Snow densitySettore ICAR/06 - Topografia E Cartografia0105 earth and related environmental sciencesRemote sensing
researchProduct

Quantitative models of hydrothermal fluid–mineral reaction: The Ischia case

2013

Abstract The intricate pathways of fluid–mineral reactions occurring underneath active hydrothermal systems are explored in this study by applying reaction path modelling to the Ischia case study. Ischia Island, in Southern Italy, hosts a well-developed and structurally complex hydrothermal system which, because of its heterogeneity in chemical and physical properties, is an ideal test sites for evaluating potentialities/limitations of quantitative geochemical models of hydrothermal reactions. We used the EQ3/6 software package, version 7.2b, to model reaction of infiltrating waters (mixtures of meteoric water and seawater in variable proportions) with Ischia’s reservoir rocks (the Mount Ep…

010504 meteorology & atmospheric sciencesGeochemistryMineralogyengineering.material010502 geochemistry & geophysics01 natural sciencesHydrothermal circulationHydrothermal systemGeochemistry and PetrologyMount Epomeo Green TuffPlagioclaseHydrothermal fluidIschia Island Reaction path modelling EQ3/60105 earth and related environmental sciencesMineralSettore GEO/08 - Geochimica E Vulcanologia13. Climate actionMeteoric waterengineeringPhenocrystSeawaterIschiaSaturation (chemistry)Clay mineralsGeologyGeochimica et Cosmochimica Acta
researchProduct