Search results for "Thermal Conductivity"
showing 10 items of 160 documents
Interaction of Lamb modes with two-level systems in amorphous nanoscopic membranes
2007
Using a generalized model of interaction between a two-level system (TLS) and an arbitrary deformation of the material, we calculate the interaction of Lamb modes with TLSs in amorphous nanoscopic membranes. We compare the mean free paths of the Lamb modes with different symmetries and calculate the heat conductivity $\kappa$. In the limit of an infinitely wide membrane, the heat conductivity is divergent. Nevertheless, the finite size of the membrane imposes a lower cut-off for the phonons frequencies, which leads to the temperature dependence $\kappa\propto T(a+b\ln T)$. This temperature dependence is a hallmark of the TLS-limited heat conductance at low temperature.
2021
Controlling thermal transport at the nanoscale is vital for many applications. Previously, it has been shown that this control can be achieved with periodically nanostructured two-dimensional phononic crystals for the case of suspended devices. Here, we show that thermal conductance can also be controlled with three-dimensional phononic crystals, allowing the engineering of the thermal contact of more varied devices without the need for suspension in the future. We show the experimental results obtained at sub-Kelvin temperatures for two different period three-dimensional crystals and for a bulk control structure. The results show that the conductance can be enhanced with the phononic cryst…
Phase separation in the quaternary Heusler compound CoTi(1−x)MnxSb – A reduction in the thermal conductivity for thermoelectric applications
2010
We investigate the phase separation of the solid solution CoTi(1−x)MnxSb into the two Heusler compounds CoTiSb and CoMnSb. Energy-dispersive X-ray spectroscopy measurements on the two-phase material reveal the presence of size- and shape-tunable CoTiSb regions in a CoMnSb matrix. We demonstrate that the formed phase and grain boundaries have a considerable influence on the phonon scattering processes, which leads to a reduction in the thermal conductivity by a factor of three compared to single-phase CoTiSb.
Reduction of phonon thermal conductivity in nanowires and nanoribbons with dynamically rough surfaces and edges
2009
We present an analytical model and molecular-dynamics simulations of the phonon heat transport in nanowires and nanoribbons with anharmonic lattices and dynamically rough surfaces and edges. In agreement with recent experiments on heat transport in single-crystalline silicon nanowires with rough surfaces, our model and simulations predict finite and length-independent phonon thermal conductivity in such quasi–one-dimensional systems, in contrast to anomalous phonon thermal conductivity of corresponding momentum-conserving systems with atomically smooth surfaces, divergent with the system length. Within our model, the main cause of thermal conductivity reduction is the momentum-nonconserving…
Tailoring of the electrical and thermal properties using ultra-short period non-symmetric superlattices
2016
Thermoelectric modules based on half-Heusler compounds offer a cheap and clean way to create eco-friendly electrical energy from waste heat. Here we study the impact of the period composition on the electrical and thermal properties in non-symmetric superlattices, where the ratio of components varies according to (TiNiSn)���:(HfNiSn)���������, and 0 ��� n ��� 6 unit cells. The thermal conductivity (��) showed a strong dependence on the material content achieving a minimum value for n = 3, whereas the highest value of the figure of merit ZT was achieved for n = 4. The measured �� can be well modeled using non-symmetric strain relaxation applied to the model of the series of thermal resistanc…
Thermal conductivity of thermoelectric Al-substituted ZnO thin films
2013
ZnO:Al thin films with a low electrical resistivity were grown by magnetron sputtering on sapphire substrates. The cross-plane thermal conductivity (κ = 4.5 ± 1.3 W/mK) at room temperature is almost one order of magnitude lower than for bulk materials. The thermoelectric figure of merit ZT at elevated temperatures was estimated from in-plane power factor and the cross-plane thermal conductivity at room temperature. It is expected that the thermal conductivity drops with increasing temperature and is lower in-plane than cross-plane. Consequently, the thin film ZT is at least three times higher than for bulk samples at intermediate temperatures. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinh…
Structural Principles and Thermoelectric Properties of Polytypic Group 14 Clathrate-II Frameworks
2013
We have investigated the structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks using quantum chemical methods. The experimentally known cubic 3C polytype was found to be the energetically most favorable framework, but the studied hexagonal polytypes (2 H, 4 H, 6 H, 8 H, 10 H) lie energetically close to it. In the case of germanium, the energy difference between the 3C and 6H clathrate-II polytypes is ten times smaller than the difference between the experimentally known 3C-Ge (α-Ge) and 4H-Ge polytypes. The thermoelectric properties of guest-occupied clathrate-II structures were investigated for compositions Na-Rb-Ga-Ge and Ge-As-I. The clathrate-…
Thermal stability and enhanced thermoelectric properties of the tetragonal tungsten bronzes Nb8-xW9+xO47 (0 <x <5)
2017
Thermoelectric materials are believed to play a fundamental role in the energy field over the next years thanks to their ability of directly converting heat into usable electric energy. To increase their integration in the commercial markets, improvements of the efficiencies are needed. At the same time, cheap and non-toxic materials are required along with easily upscalable production cycles. Compounds of the tetragonal tungsten bronze (TTB) series Nb8-xW9+xO47 fulfill all these requirements and are promising materials. Their adaptive structure ensures glass-like values of the thermal conductivity, and the substitution on the cation side allows a controlled manipulation of the electronic p…
Charge carrier concentration optimization of thermoelectric p-type half-Heusler compounds
2015
The carrier concentration in the p-type half-Heusler compound Ti0.3Zr0.35Hf0.35CoSb1−xSnx was optimized, which is a fundamental approach to enhance the performance of thermoelectric materials. The optimum carrier concentration is reached with a substitution level x = 0.15 of Sn, which yields the maximum power factor, 2.69 × 10−3 W m−1 K−2, and the maximum ZT = 0.8. This is an enhancement of about 40% in the power factor and the figure of merit compared to samples with x = 0.2. To achieve low thermal conductivities in half-Heusler compounds, intrinsic phase separation is an important key point. The present work addresses the influence of different preparation procedures on the quality and re…
Thermoelectric properties of p-type Bi2Sr2Co2O9 glass-ceramics
2014
In the oxide system of Bi–Sr–Co glass melts have been prepared by adding a small amount of glass formers. A crystallization leads to crystalline phases of Bi8Sr8Co4O25, BiSrCo2Ox and Bi2Sr2Co2O9 (BC-222) densely embedded into a residual glass phase. This work shows the possibility of obtaining microstructured bulk material with low thermal conductivity and relatively high electrical conductivity via such a glass ceramic approach. Furthermore the stability of these materials under thermal cycling for temperatures up to 700 °C is shown. A characterization of the thermoelectric properties leads to a figure of merit (ZT) between 0.008 and 0.018.