Search results for "Thermal conductivity"

showing 10 items of 160 documents

Acoustic characterization of Silica aerogel clamped plates for perfect absorption purpose

2017

International audience; Silica aerogel has been widely studied as bulk material for its extremely low density and thermal conductivity. Plates or membranes made of this extremely soft materials exhibits interesting properties for sound absorption. A novel signal processing method for the characterization of an acoustic metamaterial made of silica aerogel clamped plates is presented. The acoustic impedance of a silica aerogel clamped plate is derived from the elastic theory for the flexural waves, while the transfer matrix method is used to model reflection and transmission coefficients of a single plate. Experimental results are obtained by using an acoustic impedance tube. The difference b…

Absorption (acoustics)Materials scienceAcoustics and UltrasonicsPhysics::Instrumentation and DetectorsTransfer-matrix method (optics)Physics::Optics01 natural sciencesCondensed Matter::Disordered Systems and Neural Networks03 medical and health sciences0302 clinical medicineThermal conductivityArts and Humanities (miscellaneous)0103 physical sciencesReflection coefficientComposite material030223 otorhinolaryngology010301 acousticsComputingMilieux_MISCELLANEOUSMetamaterialAerogel[PHYS.MECA]Physics [physics]/Mechanics [physics][PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]Condensed Matter::Soft Condensed MatterReflection (mathematics)[PHYS.MECA] Physics [physics]/Mechanics [physics]Acoustic impedance[PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
researchProduct

Thermoelectric properties of CoTiSb based compounds

2009

Several CoTiSb based compounds were synthesized and investigated on their thermoelectric properties. The aim was to improve the thermoelectric properties of CoTiSb by the systematic substitution of atoms or the introduction of additional Co into the vacant sublattice. The solid solutions Co1+xTiSb, Co1?yCuyTiSb and CoTiSb1?zBiz were synthesized. X-ray diffraction was used to investigate the crystal structure. The resistivity, the Seebeck coefficient and the thermal conductivity were determined for all compounds in the temperature range from 2 to 400?K. The highest figure of merit for each solid solution is presented. We were able to improve the figure of merit by a factor of approximately s…

Acoustics and Ultrasonicsbusiness.industryChemistryAnalytical chemistryAtmospheric temperature rangeCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOpticsThermal conductivityElectrical resistivity and conductivitySeebeck coefficientThermoelectric effectX-ray crystallographyFigure of meritbusinessSolid solutionJournal of Physics D: Applied Physics
researchProduct

Performance Analysis of Innovative Vacuum Insulation Panel

2013

Thermal insulation has become one of the central themes in energy behavior improvement. The use of insulating materials, from the thermal and hydrothermal aspect, allows the reduction of the heat transfer in each of the technical elements increasing their thermal inertia. Even if the research has led to the use of innovative materials with high values of thermal insulation, one of the main problems, which is difficult to resolve, is the thickness of the building envelope to reach levels of transmittance that can allow considerable savings of energy and CO2 emissions. With this objective the VIP (Vacuum Insulation Panel) technology in building applications is an innovative solution to obtain…

Advanced Materials Building Technologies Insulating Performance Retrofit Thermal ConductivitySettore ICAR/10 - Architettura Tecnica
researchProduct

Ab initio computational study on the lattice thermal conductivity of Zintl clathrates [Si19P4]Cl4 and Na4[Al4Si19]

2016

The lattice thermal conductivity of silicon clathrate framework Si23 and two Zintl clathrates, [Si19P4]Cl4 and Na4[Al4Si19], is investigated by using an iterative solution of the linearized Boltzmann transport equation in conjunction with ab initio lattice dynamical techniques. At 300 K, the lattice thermal conductivities for Si23, [Si19P4]Cl4, and Na4[Al4Si19] were found to be 43 W/(m K), 25 W/(m K), and 2 W/(m K), respectively. In the case of Na4[Al4Si19], the order-of-magnitude reduction in the lattice thermal conductivity was found to be mostly due to relaxation times and group velocities differing from Si23 and [Si19P4]Cl4. The difference in the relaxation times and group velocities ar…

Boltzmann transport equationsilicon clathrate frameworkthermal conductivityZintl clathrates
researchProduct

Effect of Sheep Wool Fibers on Thermal Insulation and Mechanical Properties of Cement-Based Composites

2019

The use of sheep wool as a filler of cement in order to produce mortar or plaster involves several advantages for environment and energy. Moreover, it is considered as a waste and, therefore, its use is characterized by low cost. The aim of this paper is to evaluate the influence of wool fibers on thermal conductivity and mechanical properties of cement. The samples were prepared using wool fibers, obtained from a breed of Sicilian sheep, with three different lengths (i.e., 1, 6, and 20 mm). Furthermore, in order to evaluate the influence of fiber content, the samples were prepared by varying the fiber weight fraction. The thermal conductivity of the samples was analyzed by using a heat flo…

CementFiller (packaging)Materials sciencebusiness.industrytheoretical modelWoolMaterials Science (miscellaneous)02 engineering and technology010501 environmental sciences021001 nanoscience & nanotechnology01 natural sciencesCement mortarnatural fiberSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiThermal insulationmechanical propertiethermal conductivityMortarComposite material0210 nano-technologybusinesscement mortar; mechanical properties; natural fibers; theoretical model; thermal conductivity; WoolSheep wool0105 earth and related environmental sciencesCement based composites
researchProduct

Spark Plasma Sintering (SPS)-Assisted Synthesis and Thermoelectric Characterization of Magnéli Phase V6O11

2018

The Magneli phase V6O11 was synthesized in gram amounts from a powder mixture of V6O11/V7O13 and vanadium metal, using the spark plasma sintering (SPS) technique. Its structure was determined with synchrotron X-ray powder diffraction data from a phase-pure sample synthesized by conventional solid-state synthesis. A special feature of Magneli-type oxides is a combination of crystallographic shear and intrinsic disorder that leads to relatively low lattice thermal conductivities. SPS prepared V6O11 has a relatively low thermal conductivity of κ = 2.72 ± 0.06 W (m K)-1 while being a n-type conductor with an electrical conductivity of σ = 0.039 ± 0.005 (μΩ m)-1, a Seebeck coefficient of α = -(3…

ChemistryAnalytical chemistryVanadiumchemistry.chemical_elementSpark plasma sintering02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic ChemistryThermal conductivityElectrical resistivity and conductivitySeebeck coefficientThermoelectric effectPhysical and Theoretical Chemistry0210 nano-technologyPowder diffractionPowder mixtureInorganic Chemistry
researchProduct

Solution Synthesis of a New Thermoelectric Zn1-xSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography

2010

Engineering materials with specific physical properties have recently focused on the effect of nanoscopic inhomogeneities at the 10 nm scale. Such features are expected to scatter medium- and long-wavelength phonons thereby lowering the thermal conductivity of the system. Low thermal conductivity is a prerequisite for effective thermoelectric materials, and the challenge is to limit the transport of heat by phonons, without simultaneously decreasing charge transport. A solution-phase technique was devised for synthesis of thermoelectric "Zn(4)Sb(3)" nanocrystals as a precursor for phase segregation into ZnSb and a new Zn-Sb intermetallic phase, Zn(1+delta)Sb, in a peritectoid reaction. Our …

ChemistryDiffusionIntermetallicGeneral ChemistryThermoelectric materialsBiochemistryCatalysisCrystallographyColloid and Surface ChemistryThermal conductivityElectron diffractionChemical physicsPhase (matter)Thermoelectric effectNanoscopic scale
researchProduct

Transfer coefficients for the liquid–vapor interface of a two-component mixture

2011

Abstract We present the excess entropy production for heat and mass transport across an interface of a non-ideal two-component mixture, using as interface variables the excess densities proposed by Gibbs. With the help of these variables we define the interface as an autonomous system in local equilibrium and study its transport properties. The entropy production determines the conjugate fluxes and forces, and equivalent forms are given. The forms contain finite differences of intensive variables into and across the surface as driving forces. These expressions for the fluxes serve as boundary conditions for integration across heterogeneous systems that are far from global equilibrium. The r…

ChemistryEntropy productionApplied MathematicsGeneral Chemical EngineeringEnthalpyFinite differenceThermodynamicsGeneral ChemistryIndustrial and Manufacturing EngineeringThermal conductivityMass transferHeat transferBoundary value problemOrder of magnitudeChemical Engineering Science
researchProduct

Thermomagnetic Properties Improved by Self-Organized Flower-Like Phase Separation of Ferromagnetic Co2Dy0.5Mn0.5Sn

2012

A thermodynamically stable phase separation of Co2Dy0.5Mn0.5Sn into the Heusler compound Co2MnSn and Co8Dy3Sn4 is induced by rapid cooling from the liquid phase. The phase separation forms an ordered flower-like structure on the microscale. The increased scattering of phonons at the phase boundaries reduces the thermal conductivity and thus improves thermoelectric and spincaloric properties.

ChromatographyMaterials scienceCondensed matter physicsScatteringThermomagnetic convectionengineering.materialCondensed Matter PhysicsHeusler compoundElectronic Optical and Magnetic MaterialsBiomaterialsCondensed Matter::Materials ScienceThermal conductivityFerromagnetismPhase (matter)Thermoelectric effectElectrochemistryengineeringCondensed Matter::Strongly Correlated ElectronsMicroscale chemistryAdvanced Functional Materials
researchProduct

Thermal conductivity of group-IV Semiconductors from a Kinetic-Collective Model

2014

The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon–phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the ther…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsSiliconCondensed Matter - Mesoscale and Nanoscale PhysicsPhononGeneral MathematicsGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and Astronomychemistry.chemical_elementDiamondGermaniumengineering.materialAtmospheric temperature rangeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter::Materials ScienceThermal conductivitychemistryMesoscale and Nanoscale Physics (cond-mat.mes-hall)engineeringRelaxation (physics)TinResearch Articles
researchProduct