Search results for "Thermogravimetry"

showing 10 items of 150 documents

Pd2Mo3N: a new molybdenum bimetallic interstitial nitride

2001

The molybdenum bimetallic nitride Pd2Mo3N has been synthesized by ammonolysis of the stoichiometric mixture of low sized pure oxide crystallites (2PdO/3MoO3) as resulting from low temperature thermal decomposition of precursor powders obtained by freeze-drying of aqueous solutions of the appropriate metal salts. This compound has been characterized by elemental analysis, energy dispersive analysis of X-rays, X-ray diffraction, scanning electron microscopy (field emision) and thermogravimetry under oxygen atmosphere. Pd2Mo3N crystallizes in the cubic space group P4132 (no. 213) (Pd2Mo3N, a = 6.81770(3) A, Z = 4), and presents the unusual filled β-manganese structure. It is stable under oxyge…

Materials scienceScanning electron microscopeThermal decompositionInorganic chemistryOxidechemistry.chemical_elementGeneral ChemistryNitrideThermogravimetrychemistry.chemical_compoundchemistryMolybdenumMaterials ChemistryCrystalliteBimetallic stripJournal of Materials Chemistry
researchProduct

Synthesis and thermoelectric characterisation of bismuth nanoparticles

2009

An effective method of preparation of bismuth nanopowders by thermal decomposition of bismuth dodecyl-mercaptide Bi(SC12H25)3 and preliminary results on their thermoelectric properties are reported. The thermolysis process leads to Bi nanoparticles due to the efficient capping agent effect of the dodecyl-disulfide by-product, which strongly bonds the surface of the Bi clusters, preventing their aggregation and significantly reducing their growth rate. The structure and morphology of the thermolysis products were investigated by differential scanning calorimetry, thermogravimetry, X-ray diffractometry, 1H nuclear magnetic resonance spectroscopy, scanning electron microscopy, and energy dispe…

Materials scienceSettore AGR/13 - Chimica AgrariaNanopowderAnalytical chemistryEnergy-dispersive X-ray spectroscopyNanoparticlechemistry.chemical_elementBioengineeringSemimetal–semiconductor transitionBismuthDifferential scanning calorimetrySeebeck coefficientbismuthThermoelectric effectSettore CHIM/01 - Chimica AnaliticaGeneral Materials SciencenanotechnologyBismuth nanoparticleThermoelectric characteristicThermal decompositionSettore CHIM/05 - Scienza E Tecnologia Dei Materiali PolimericiGeneral ChemistryCondensed Matter Physicsthermoelectric propertiesAtomic and Molecular Physics and OpticsThermogravimetrychemistryModeling and SimulationMercaptide thermolysinanoparticlesJournal of Nanoparticle Research
researchProduct

Spin Crossover Metal-Organic Frameworks with Inserted Photoactive Guests: On the Quest to Control the Spin State by Photoisomerization

2021

International audience; Three Hofmann-like metal-organic frameworks {Fe(bpac)[Pt(CN)4]}•G (bpac=1,2-bis(4-pyridyl)acetylene) were synthesized with photoisomerizable guest molecules (G = trans-azobenzene, trans-stilbene or cis-stilbene) and were characterized by elemental analysis, thermogravimetry and powder X-ray diffraction. The insertion of guest molecules and their conformation were inferred from Raman and FTIR spectra and from single-crystal X-ray diffraction and confronted with computational simulation. The magnetic and photomagnetic behaviors of the framework are significantly altered by the different guest molecules and different conformations. On the other hand, photoisomerization …

Materials scienceSpin statesPhotoisomerization02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic ChemistryThermogravimetryCrystallographychemistry.chemical_compoundsymbols.namesakeAcetylenechemistrySpin crossoversymbols[CHIM.CRIS]Chemical Sciences/CristallographyMoleculeMetal-organic framework[CHIM.COOR]Chemical Sciences/Coordination chemistry0210 nano-technologyRaman spectroscopy
researchProduct

Low temperature synthesis of monodisperse nanoscaled ZrO2with a large specific surface area

2012

Thermal decomposition of Zr(C(2)O(4))(2)·4H(2)O within an autoclave or in a conventional tube furnace at temperatures below 380 °C resulted in nano- and micron-sized ZrO(2), respectively. Reactions under autogenic pressure yielded monodisperse monoclinic (m) and tetragonal (t) ZrO(2) nanoparticles with an average diameter of ~8 nm and interconnected t-ZrO(2) nanoparticles with diameters of ~4 nm, depending on the synthesis temperature. Samples were characterised by X-ray diffraction (XRD), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) associated with energy dispersive X-ray spectroscopy (EDS), Raman microspectroscopy and phot…

Materials scienceSurface PropertiesScanning electron microscopeSmall-angle X-ray scatteringSpectrum AnalysisThermal decompositionTemperatureNanoparticleNanotechnologyChemistry Techniques SyntheticNanostructuresInorganic ChemistryChemical engineeringTransmission electron microscopySpecific surface areaThermogravimetryZirconiumParticle sizeMonoclinic crystal systemDalton Trans.
researchProduct

Multifunctional clickable and protein-repellent magnetic silica nanoparticles

2016

Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene func…

Materials scienceSurface PropertiesSilicon dioxideNanoparticleNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesMagneticschemistry.chemical_compoundAdsorptionDynamic light scatteringAnimalsGeneral Materials Sciencechemistry.chemical_classificationBiomoleculeSerum Albumin BovineSilicon Dioxide021001 nanoscience & nanotechnologyDynamic Light ScatteringFerrosoferric Oxide0104 chemical sciencesElectrophoresischemistryCovalent bondThermogravimetryNanoparticlesPolystyrenesCattleElectrophoresis Polyacrylamide GelMuramidaseAdsorption0210 nano-technologyProtein adsorptionNanoscale
researchProduct

Protection of high-density polyethylene-silicon composites from ultraviolet-visible photodegradation

2017

[EN] The extent of the ultraviolet¿visible (UV¿vis) photoirradiation effect on high-density polyethylene (HDPE) and HDPE¿sili-con (Si) composites is reported in terms of the addition of Si microparticles at contents of 0.1, 1, and 5 wt %. A standard acceleratedUV-vis exposure was applied over 2750 h, corresponding to 22 months in Florida. Thermogravimetry, differential scanning calorimetry,and Fourier transform infrared spectroscopy were used as reliable techniques for monitoring the quality of the HDPE-Si composites. Theincreasing addition of Si microparticles delayed the photodegradation of the HDPE¿Si composites. Because of their strong light-scattering effects, Si microparticles blocked…

Materials scienceThermal propertiesPolymers and PlasticsSiliconComposite numberDifferential scanning calorimetry (DSC)chemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesElectron Microscopy Service of the UPVchemistry.chemical_compoundDegradationDifferential scanning calorimetryMaterials ChemistryFourier transform infrared spectroscopyComposite materialPhotodegradationMaterials compostosThermogravimetric analysis (TGA)TermoplàsticsGeneral ChemistryPolyolefinsPolyethylene021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsThermogravimetrychemistryMAQUINAS Y MOTORES TERMICOSHigh-density polyethylene0210 nano-technology
researchProduct

Insights into the formation of metal carbon nanocomposites for energy storage using hybrid NiFe layered double hydroxides as precursors

2020

[EN] NiFe-carbon magnetic nanocomposites prepared using hybrid sebacate intercalated layered double hydroxides (LDHs) as precursors are shown to be of interest as supercapacitors. Here, the low-temperature formation mechanism of these materials has been deciphered by means of a combined study using complementaryin situ(temperature-dependent) techniques. Specifically, studies involving X-ray powder diffraction, thermogravimetry coupled to mass spectrometry (TG-MS), statistical Raman spectroscopy (SRS), aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) have been carried out. The experimental results confirm the early formation o…

Materials sciencechemistry.chemical_elementNanoparticle02 engineering and technologyengineering.material010402 general chemistry01 natural sciencessymbols.namesakeScanning transmission electron microscopyNanocompositeLayered double hydroxidesGeneral ChemistryQuímicaEnergia Desenvolupament021001 nanoscience & nanotechnology0104 chemical sciencesThermogravimetryChemistrychemistryChemical engineeringengineeringsymbols0210 nano-technologyRaman spectroscopyCarbonPowder diffraction
researchProduct

Enamine-based hole transporting materials for vacuum-deposited perovskite solar cells

2020

In a short period of time, the rapid development of perovskite solar cells attracted a lot of attention in the science community with the record for power conversion efficiency being broken every year. Despite the fast progress in power conversion efficiency there are still many issues that need to be solved before starting large scale commercial applications, such as, among others, the difficult and costly synthesis and usage of toxic solvents for the deposition of hole transport materials (HTMs). We herein report new enamine-based charge transport materials obtained via a simple one step synthesis procedure, from commercially available precursors and without the use of expensive organomet…

Materials scienceenamine-based hole transporting materialsEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyperovskite solar cellsCatalysisEnaminechemistry.chemical_compoundVacuum depositionElectric fieldDeposition (phase transition)Materialsenamine-based hole transporting materials ; vacuum-deposited ; perovskite solar cellsCèl·lules fotoelèctriquesPerovskite (structure)Renewable Energy Sustainability and the Environmentbusiness.industryEnergy conversion efficiency021001 nanoscience & nanotechnology0104 chemical sciencesThermogravimetryFuel TechnologychemistryOptoelectronics0210 nano-technologybusinessvacuum-deposited
researchProduct

Self-assembled FeCo/gelatin nanospheres with rapid magnetic response and high biomolecule-loading capacity.

2009

Materials sciencefood.ingredientTime FactorsIronNanoparticleNanotechnologyGelatinSelf assembledBiomaterialsMagneticsfoodAnimalsGeneral Materials Sciencechemistry.chemical_classificationBiomoleculeGeneral ChemistryMagnetic responseCobaltDNAchemistryDrug deliveryThermogravimetryGelatinSelf-assemblyNanospheresBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

(Ag)Pd-Fe3O4 Nanocomposites as Novel Catalysts for Methane Partial Oxidation at Low Temperature

2020

Nanostructured composite materials based on noble mono-(Pd) or bi-metallic (Ag/Pd) particles supported on mixed iron oxides (II/III) with bulk magnetite structure (Fe3O4) have been developed in order to assess their potential for heterogeneous catalysis applications in methane partial oxidation. Advancing the direct transformation of methane into value-added chemicals is consensually accepted as the key to ensuring sustainable development in the forthcoming future. On the one hand, nanosized Fe3O4 particles with spherical morphology were synthesized by an aqueous-based reflux method employing different Fe (II)/Fe (III) molar ratios (2 or 4) and reflux temperatures (80, 95 or 110 &deg

Materials scienceoxidation catalysisXRDGeneral Chemical EngineeringNanoparticleAgHeterogeneous catalysisArticleCatalysisFe<sub>3</sub>O<sub>4</sub>EDSReaction ratelcsh:Chemistrymagnetite iron oxidePdGeneral Materials SciencesilverPartial oxidationBimetallic stripRamanTG in airlow-temperature activityNanocompositenanocompositeelectron microscopymethaneFe3O4palladiumTG in hydrogenThermogravimetryheterogeneous catalysislcsh:QD1-999formaldehydeNuclear chemistryNanomaterials
researchProduct