Search results for "Thermostat"
showing 10 items of 13 documents
Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold
2017
This technical note addresses the structure preserving stabilization by output feedback of conservative input-output contact systems, a class of input-output Hamiltonian systems defined on contact manifolds. In the first instance, achievable contact forms in closed-loop and the associated Legendre submanifolds are analysed. In the second instance the stability properties of a hyperbolic equilibrium point of a strict contact vector field are analysed and it is shown that the stable and unstable manifolds are Legendre submanifolds. In the third instance the consequences for the design of stable structure preserving output feedback are derived: in closed-loop one may achieve stability only rel…
A methodology for evaluating the flexibility potential of domestic air-conditioning systems
2020
The paper presents a methodology for quantifying the electrical flexibility potential of air-conditioning systems (ACS) installed in residential buildings according to the building envelope characteristics and the ACS performance. In order to provide a thorough analysis of the issue, the ACS baseline consumption referred to the indoor temperature of 24°C has been computed for three typical residential buildings built in the South of Italy over different periods. The baseline consumption was used as a reference to estimate the effect of the set point temperature change on the ACS power profile. The results showed that increasing the set-point temperature of ACS by 2°C and 4°C leads to a redu…
Driven Brownian particle as a paradigm for a nonequilibrium heat bath: Effective temperature and cyclic work extraction
2017
We apply the concept of a frequency-dependent effective temperature based on the fluctuation-dissipation ratio to a driven Brownian particle in a nonequilibrium steady state. Using this system as a thermostat for a weakly coupled harmonic oscillator, the oscillator thermalizes according to a canonical distribution at the respective effective temperature across the entire frequency spectrum. By turning the oscillator from a passive "thermometer" into a heat engine, we realize the cyclic extraction of work from a single thermal reservoir, which is feasible only due to its nonequilibrium nature.
Exploiting seeding of random number generators for efficient domain decomposition parallelization of dissipative particle dynamics
2013
Abstract Dissipative particle dynamics (DPD) is a new promising method commonly used in coarse-grained simulations of soft matter and biomolecular systems at constant temperature. The DPD thermostat involves the evaluation of stochastic or random forces between pairs of neighboring particles in every time step. In a parallel computing environment, the transfer of these forces from node to node can be very time consuming. In this paper we describe the implementation of a seeded random number generator with three input seeds at each step which enables the complete generation of the pairwise stochastic forces in parallel DPD simulations with minimal communication between nodes.
Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls and caveats
2017
Heterogeneous multiscale methods (HMM) combine molecular accuracy of particle-based simulations with the computational efficiency of continuum descriptions to model flow in soft matter liquids. In these schemes, molecular simulations typically pose a computational bottleneck, which we investigate in detail in this study. We find that it is preferable to simulate many small systems as opposed to a few large systems, and that a choice of a simple isokinetic thermostat is typically sufficient while thermostats such as Lowe-Andersen allow for simulations at elevated viscosity. We discuss suitable choices for time steps and finite-size effects which arise in the limit of very small simulation bo…
Homogeneous Weyl connections of non-positive curvature
2015
We study homogenous Weyl connections with non-positive sectional curvatures. The Cartesian product $\mathbb S^1 \times M$ carries canonical families of Weyl connections with such a property, for any Riemmanian manifold $M$. We prove that if a homogenous Weyl connection on a manifold, modeled on a unimodular Lie group, is non-positive in a stronger sense (streched non-positive), then it must be locally of the product type.
Thermostats: Modeling non-equilibrium dynamics
2012
Comparison of Dissipative Particle Dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems
2007
In this work we compare and characterize the behavior of Langevin and Dissipative Particle Dynamics (DPD) thermostats in a broad range of non-equilibrium simulations of polymeric systems. Polymer brushes in relative sliding motion, polymeric liquids in Poiseuille and Couette flows, and brush-melt interfaces are used as model systems to analyze the efficiency and limitations of different Langevin and DPD thermostat implementations. Widely used coarse-grained bead-spring models under good and poor solvent conditions are employed to assess the effects of the thermostats. We considered equilibrium, transient, and steady state examples for testing the ability of the thermostats to maintain const…
Mean-field games and dynamic demand management in power grids
2013
This paper applies mean-field game theory to dynamic demand management. For a large population of electrical heating or cooling appliances (called agents), we provide a mean-field game that guarantees desynchronization of the agents thus improving the power network resilience. Second, for the game at hand, we exhibit a mean-field equilibrium, where each agent adopts a bang-bang switching control with threshold placed at a nominal temperature. At equilibrium, through an opportune design of the terminal penalty, the switching control regulates the mean temperature (computed over the population) and the mains frequency around the nominal value. To overcome Zeno phenomena we also adjust the ban…