Search results for "Time of Flight"
showing 10 items of 114 documents
Time Of Flight measurements via two LiDAR systems with SiPM and APD
2016
In this paper, we present an experimental comparison of two LiDAR systems, employing the SiPM and the APD as photodetectors, in terms of TOF measurements differing for the distance of the target and at different intensities of ambient light. The use of the APD represents the conventional approach, while the implementation of the SiPM is innovative. The performed measurements achieved very promising results, thus demonstrating the effectiveness of our LiDAR based on SiPM.
Single Ion Thermal Wave Packet Analyzed Via Time-Of-Flight Detection
2021
Abstract A single 40Ca ion is confined in the harmonic potential of a Paul trap and cooled to a temperature of a few mK, with a wave packet of sub-μm spatial and sub-m s−1 velocity uncertainty. Deterministically extracted from the Paul trap, the single ion is propagating over a distance of 0.27 m and detected. By engineering the ion extraction process on the initial wave packet, theoretically modeling the ion trajectories, and studying experimentally the time-of-flight distribution, we directly infer the state of the previously trapped ion. This analysis allows for accurate remote sensing of the previous motional excitation in the trap potential, both coherently or incoherently. Our method …
On the use of stacks of fission-like targets for neutron capture experiments
2019
The measurement of neutron induced reactions on unstable isotopes is of interest in many fields, from nuclear energy to astrophysics or applications; in particular transuranic isotopes are essential for the development of innovative nuclear reactors and for the management of the radioactive waste. In such measurements, the quality of the associated radioactive target is crucial for the success of the experiment, but in many cases the geometry, amount of mass and encapsulation of the target are not optimal, leading to limited results. In this work we propose to produce high quality radioactive targets for capture as a stack of thin targets using the techniques usually employed for fission me…
Study of the neutron-rich nuclei with $N$ = 21, $^{35}$Si and $^{33}$Mg, by beta decay of $^{35}$Al and $^{33}$Na
2000
Abstract The first information on the level structure of the N =21 nuclei, 35 Si and 33 Mg, has been obtained by the beta decay study of 35 Al and 33 Na, produced by fragmentation of an UC target with 1.4 GeV protons at CERN/ISOLDE. The experimental technique involved β – γ , β – γ – γ , and β –n– γ coincidences, neutron spectra being obtained by time of flight measurements. Gamma detection was made either using large Ge counters or small BaF 2 scintillators (for lifetime measurements). In the case of the 35 Al decay, ( T 1/2 =41.6(2.2) ms), a simple structure has been found for the level scheme of 35 Si ( Z =14, N =21) which has been interpreted with the level sequence : 7/2 − , 3/2 − and …
Time-of-flight photoelectron emission microscopy TOF-PEEM: first results
1998
The time structure of the synchrotron radiation at BESSY (Berlin) is used to operate a photoemission electron microscope in a time-of-flight (TOF) mode. The electrons which are emitted from the sample surface with different energies are dispersed in a drift tube subsequent to the imaging optics. The screen of the microscope was replaced by a fast scintillator (tau = 1.4 ns) and the light is detected by an ultra fast gated intensified CCD camera (800 ps gate 1 MHz repetition rate). The resolving power in the energy domain is demonstrated and possible implications on the spatial resolution (chromatic correction) are discussed. Additionally, an improved contrast at very low emission energies i…
Design and commissioning of the GSI pion beam
2002
We describe the design of the secondary pion beam-line installed at the SIS 18Tm synchrotron at GSI, Darmstadt, and discuss the commissioning results. The experiments were performed with proton and C-12 primary beams at several energies using beryllium production targets. Pion yields in a momentum range between 0.4 and 2.8 GeV/c were identified, At the highest primary beam energies of 3.5 GeV for proton and 2.0 A GeV for carbon ions, the latter beam produces the highest low-momentum pion yield while at momenta of 1.5 GeV/c the yields are comparable and at 2.8 GeV/c the proton beam is superior. A momentum resolution of around 0.5% is achieved and the time resolution (a) ranges from 100 to 15…
Production of 4He and 4He‾ in Pb–Pb collisions at sNN=2.76TeV at the LHC
2018
Results on the production of 4 He and He‾4 nuclei in Pb–Pb collisions at sNN=2.76TeV in the rapidity range |y|<1 , using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0–10% central events are found to be dN/dyHe4=(0.8±0.4(stat)±0.3(syst))×10−6 and dN/dyHe‾4=(1.1±0.4(stat)±0.2(syst))×10−6 , respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature ( Tchem=156MeV ) as for light hadrons. The measured ratio of He‾4/4He is 1.4±0.8(stat)±0.5(syst) .
Test of digital neutron-gamma discrimination with four different photomultiplier tubes for the NEutron Detector Array (NEDA)
2014
WOS: 000344994600012
High Precision Momentum Calibration of the Magnetic Spectrometers at MAMI for Hypernuclear Binding Energy Determination
2016
We propose a new method for absolute momentum calibration of magnetic spectrometers used in nuclear physics, using the time-of-flight (TOF), differences of pairs of particles with different masses. In cases where the flight path is not known, a calibration can be determined by using the TOF differences of two pair combinations of three particles. A Cherenkov detector, read out by a radio frequency photomultiplier tube, is considered as the high-resolution and highly stable TOF detector. By means of Monte Carlo simulations it is demonstrated that the magnetic spectrometers at the MAMI electron-scattering facility can be calibrated absolutely with an accuracy $\delta p/p\leq 10^{-4}$, which w…
Plastic Scintillation Detectors for Time-of-Flight Mass Measurements
2020
Fast timing detectors are an essential element in the experimental setup for time-of-flight (ToF) mass measurements of unstable nuclei. We have upgraded the scintillator detectors used in experiments at the National Superconducting Cyclotron Laboratory (NSCL) by increasing the number of photomultiplier tubes that read out their light signals to four per detector, and characterized them in a test experiment with $^{48}$Ca beam at the NSCL. The new detectors achieved a time resolution ($\sigma$) of 7.5 ps. We systematically investigated different factors that affect their timing performance. In addition, we evaluated the ability of positioning the hitting points on the scintillator using the …