Search results for "Time-resolved"

showing 10 items of 70 documents

Sub-nanosecond excitonic luminescence in ZnO:In nanocrystals

2019

The financial support of research European Union ERA.NET RUS_ST20170-51 . This work was partly supported by Russian Foundation for Basic Research, Russia , project No. 18-52-76002 . The sample preparation was carried out as part of SFERA II project -Transnational Access activities ( European Union 7th Framework Programme Grant Agreement N3126430 ).

010302 applied physicsRadiationMaterials scienceMorphology (linguistics)DopingKineticsAnalytical chemistrychemistry.chemical_elementTime-resolved luminescenceNanosecondVapour deposition01 natural sciences030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineNanocrystalchemistry0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]In [ZnO]Indium dopingLuminescenceInstrumentationScintillationIndium
researchProduct

Polyamine Linear Chains Bearing Two Identical Terminal Aromatic Units. Evidence for a Photo Induced Bending Movement

2001

Abstract Several chemosensors bearing a fluorescent unit at both ends of a linear polyamine chain were synthesised. The protonation as well as the association constants with Cu2+ and Zn2+ were determined by potentiometry in 0.15 mol dm−3 NaCl at 298.1 K. In the case of 1,16-bis(1-naphthylmethyl)-1,4,7,10,13,16-hexaazadecane hexahydrochloride (L1), formation of an excimer emission in aqueous acidic solutions was observed. The system was characterized by steady state fluorescence emission and by time resolved fluorescence. In the ground state the molecule is expected to adopt a more or less linear conformation, while in the excited state a bending movement of the chain must occur in order to …

Aqueous solutionChemistryExcited stateMoleculeProtonationGeneral ChemistryTime-resolved spectroscopyExcimerPhotochemistryGround stateFluorescenceSupramolecular Chemistry
researchProduct

Tracking Ca2+ ATPase intermediates in real time by x-ray solution scattering

2020

Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) transporters regulate calcium signaling by active calcium ion reuptake to internal stores. Structural transitions associated with transport have been characterized by x-ray crystallography, but critical intermediates involved in the accessibility switch across the membrane are missing. We combined time-resolved x-ray solution scattering (TR-XSS) experiments and molecular dynamics (MD) simulations for real-time tracking of concerted SERCA reaction cycle dynamics in the native membrane. The equilibrium [Ca2] E1 state before laser activation differed in the domain arrangement compared with crystal structures, and following laser-induced release o…

CONFORMATIONAL-CHANGESSERCAATPaseAtom and Molecular Physics and OpticsPUMPSTRUCTURAL DYNAMICSchemistry.chemical_elementCalciumCA2+-ATPASE03 medical and health sciencesPHOSPHOENZYME030304 developmental biologyCalcium signaling0303 health sciencesMultidisciplinarybiologyEndoplasmic reticulum030302 biochemistry & molecular biologySARCOPLASMIC-RETICULUMSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)MembranechemistryATPase time-resolved X-ray solution scatteringCytoplasmMOLECULAR-DYNAMICSbiology.proteinBiophysicsPhosphorylationSKELETAL-MUSCLEAtom- och molekylfysik och optikMEMBRANECALCIUM-TRANSPORT
researchProduct

Controlling molecular alignment rephasing through interference of Raman-induced rotational coherence

2000

0021-9606; Quantum control over molecular alignment rephasing is experimentally investigated in gaseous CO2. The control process is achieved by illuminating the medium with a pair of pump-pulses separated in time by approximately an integer value of T0=1/8B(0), where B(0) is the rotational constant. Through a Raman-type process, each pulse alone produces rotational coherence leading to a periodic orientational anisotropy. It is the combination of the two pulses that yields to quantum interference, resulting in a modification of this anisotropy probed by a third delayed pulse. The effect is accurately analyzed for different time delays between the two pulses. A theoretical analysis supplies …

CONTROLGeneral Physics and AstronomyRotational transitionTRANSITIONS01 natural sciencesMolecular physicssymbols.namesakeOpticsINDUCED POLARIZATION SPECTROSCOPYTIME-RESOLVED DYNAMICSMULTIPHOTON IONIZATIONSYSTEMSElectric field0103 physical sciencesPhysical and Theoretical ChemistryMolecular alignmentFIELD010306 general physicsAnisotropyPhysicsQuantum optics010304 chemical physicsbusiness.industryWAVE-PACKETSPHOTODISSOCIATIONINDUCED CONTINUUM STRUCTUREsymbolsLASERRotational spectroscopyRaman spectroscopybusinessCoherence (physics)
researchProduct

<title>Time-resolved fluorescence study of interaction of the monoclonal anticoproporphyrin antibodies and (Pt-)coproporphyrin</title>

1995

Mechanisms of ligand binding by monoclonal anti-coproporphyrin antibodies are studied by steady-state and time-resolved fluorescence spectroscopy by use of a picosecond laser system. The antibodies quench the coproporphyrin (CP) fluorescence, but the CP fluorescence spectra show a strong shift of maxima at high concentrations of antibodies (Ab) or their Fab fragment. This can be explained by a special type of Ab or Fab dimerization. Fluorescence decays of CP are measured at different concentrations of Ab and different pH values. The following deconvolution procedure based on the non-linear least squares method reveals a two- exponential character of the fluorescence decay. Data obtained by …

ChemistryAnalytical chemistryFluorescence cross-correlation spectroscopyTime-resolved spectroscopySpectroscopyLaser-induced fluorescenceLuminescencePhosphorescenceFluorescenceFluorescence spectroscopySPIE Proceedings
researchProduct

Thermal oxidative process in extra-virgin olive oils studied by FTIR, rheology and time-resolved luminescence

2011

Abstract With the aim to characterise the antioxidant properties of different extra-virgin olive oils and to understand in more detail the mechanisms of oil degradation, we have made an experimental study on thermal induced oxidative processes of extra-virgin olive oils by using different techniques: Fourier Transform Infrared (FTIR) spectroscopy, rheology and time-resolved luminescence. The oxidation process was followed at three different heating temperatures (30, 60 and 90 °C) as a function of time up to 35 days. Thermal treatment induced changes in the FTIR spectra in the wavenumbers region 3100–3600 cm −1 : in particular, the absorption profiles show an initial formation of hydroperoxi…

ChemistryChemical polarityExtra-virgin olive oilViscosimetryAnalytical chemistryTime-resolved luminescenceGeneral MedicineThermal treatmentPhotochemistrySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Analytical ChemistryViscosityFTIRRheologyAntioxidantFourier transform infrared spectroscopyAbsorption (chemistry)SpectroscopyLuminescenceFood ScienceFood Chemistry
researchProduct

Up-conversion processes in NaLaF4:Er3+

2009

abstract Structural and spectroscopic investigation of NaLaF 4 :Er 3+ material at different doping concentrations ispresented. X-ray diffraction patterns, up-conversion luminescence spectra and decay curves for 2 H 9/2 ? 4 I 15/2 , 4 S 3/2 ? 4 I 15/2 and 4 F 9/2 ? 4 I 15/2 optical transitions in the material are shown and possibleexcitation routes are discussed. Raman spectrum for the undoped material is presented and the effectivephonon energy of the material is estimated. Based on the obtained results application of rare-earth dopedNaLaF 4 in the field of up-conversion phosphors is evaluated. 2009 Elsevier B.V. All rights reserved. 1. IntroductionFor many years rare-earth (RE) doped materi…

ChemistryOrganic ChemistryDopingAnalytical chemistryNonlinear opticsPhosphorAtomic and Molecular Physics and OpticsPhoton upconversionElectronic Optical and Magnetic MaterialsIonInorganic Chemistrysymbols.namesakesymbolsElectrical and Electronic EngineeringPhysical and Theoretical ChemistryAtomic physicsTime-resolved spectroscopyLuminescenceRaman spectroscopySpectroscopyOptical Materials
researchProduct

Characterisation of Chlorophyll a and Chlorophyll b Monomers in Various Solvent Environments with Ultrafast Spectroscopy

1998

In photosynthesis the energy from the sun is captured by light harvesting chlorophyll pigments and converted to stable chemical energy, by the photochemical reaction center. Photosynthetic energy transfer in the antenna systems of green plants has previously been studied by ultrafast time resolved spectroscopy. The characteristics of the chlorophyll pigments itself is important to study in order to understand the dynamics on a femtosecond timescale. One way to study the energy transfer is to use transient absorption spectroscopy and follow the increase or decrease in the transient absorption signal with time (1). Another way to study the energy transfer is to monitor the change in dichroism…

Chlorophyll bPhysics::Biological Physics0303 health sciencesChlorophyll aMaterials scienceDichroism010402 general chemistryPhotochemistry7. Clean energy01 natural sciences0104 chemical sciencesLight-harvesting complex03 medical and health scienceschemistry.chemical_compoundchemistryChlorophyllUltrafast laser spectroscopyTime-resolved spectroscopySpectroscopy030304 developmental biology
researchProduct

Ultrafast Metamorphosis of a Complex Charge Density Wave in Tantalumdiselenite

2016

Using ultrafast electron diffraction, we record the transformation between a nearly-commensurate and an incommensurate charge-density-wave in 1T-TaS2, which takes place orders of magnitude faster than previously observed for commensurate-to-incommensurate transitions.

Condensed Matter::Quantum GasesDiffractionPhysicsOrders of magnitude (temperature)Ultrafast electron diffractionmedia_common.quotation_subjectPhysics::OpticsCondensed Matter::SuperconductivityElectric fieldCondensed Matter::Strongly Correlated ElectronsAtomic physicsTime-resolved spectroscopyMetamorphosisCharge density waveUltrashort pulsemedia_commonInternational Conference on Ultrafast Phenomena
researchProduct

Environment assisted photoconversion of luminescent surface defects in SiO 2 nanoparticles

2017

Abstract Time-resolved photoluminescence investigation on SiO 2 nanoparticles was carried out in controlled atmosphere, with the aim to discern the effects induced on the typical blue luminescence band by high power UV Nd:YAG laser photons (4.66 eV) and by some selected molecular species of the air (O 2 , N 2 , CO 2 , H 2 O). These factors ultimately determine both the brightness and photostability of the emitting defect, so as to limit the unique and attracting potentialities offered by this system in many applicative fields. Here it is highlighted that the effects due to photons and molecules, singularly considered, are not additive, the radiation being more dramatic in reducing the emiss…

Controlled atmospherePhotoluminescenceMaterials scienceGeneral Physics and AstronomyNanoparticleSiO2 nanoparticle02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesFluenceSurface defectlaw.inventionlawQuenchingSpectroscopyQuenchingbusiness.industryTime-resolved luminescenceSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaser0104 chemical sciencesSurfaces Coatings and FilmsPhotostabilityBleachingOptoelectronics0210 nano-technologyLuminescencebusinessApplied Surface Science
researchProduct