Search results for "Titanium Dioxide"
showing 10 items of 169 documents
Exploring titanium dioxide as a new photonic platform
2019
International audience; We report the development of titanium dioxide-based waveguides for applications in the near-and mid-infrared. Thanks to embedded metal grating couplers, we demonstrate error free 10 Gbit/s optical transmissions at 1.55 and 2 µm. We also demonstrate octave-spanning supercontinuum in cm-long waveguides. We explore the way to improve such waveguides through optimized fabrication process.
Le dioxyde de titane : un matériau nouveau pour la photonique à 1.55 µm et à 2 µm
2018
In the next decades, the limits of current optical communication systems will be reached unless new solutions are adopted. On of them is the use of a new spectral range around 2 µm enabled by the emergence of thulium-doped fiber amplifiers. In this thesis, we will focus on it in the context of very short distances transmissions on photonic chips. Various materials, mainly titanium dioxide (TiO2), will be explored.This thesis work has two main objectives. On the one hand, it aims to demonstrate that a material relatively unexplored, titanium dioxide, is promising for telecom applications by comparing it to more mature plateforms. On the other hand, it tends to introduce the spectral band aro…
TiO2 Nanostructures for Photoelectrocatalytic Degradation of Acetaminophen
2019
[EN] Advanced oxidation processes driven by renewable energy sources are gaining attention in degrading organic pollutants in waste waters in an efficient and sustainable way. The present work is focused on a study of TiO2 nanotubes as photocatalysts for photoelectrocatalytic (PEC) degradation of acetaminophen (AMP) at different pH (3, 7, and 9). In particular, different TiO2 photocatalysts were synthetized by stirring the electrode at different Reynolds numbers (Res) during electrochemical anodization. The morphology of the photocatalysts and their crystalline structure were evaluated by field emission scanning electron microscopy (FESEM) and Raman confocal laser microscopy (RCLM). These a…
Raman spectral identification of phase distribution in anodic titanium dioxide coating
2017
Growing need for cleaner environment and energy production has brought about a hunt for perspective materials. One of such perspective materials is titanium dioxide (TiO2, titania) due to its chemical stability and photocatalytic properties. Titania can be synthesized through many methods but anodization process is one of the prevailing methods to produce high active surface nanostructured titania. Various anodization electrolytes produce different polymorphs of TiO2. Uniform phase distribution on the surface is crucial for higher photocatalytic activity. In this research, the influence of two electrolytes on polymorph phase distribution of TiO2 was investigated. Phase distribution correlat…
Photocatalytic activity of N-doped TiO2-based materials embedded with gold NPs for applications in antibacterial photodynamic therapy (aPDT)
Antibacterial photodynamic therapy (aPDT) is a potential treatment for antibiotic-resistant bacterial infections. It is based on the photosensitization of bacterial cells with exogenous agents that, when exposed to light, produce reactive oxygen species (ROS), such as OH-, O2-, H2O2. ROS can induce complex oxidative-reductive chains of reactions, resulting in damage of cellular components in target tissues1. Photocatalysts, like inorganic semiconductor oxides, represent an interesting class of materials to design new strategies for aPTD. As exposed to light of proper wavelengths, photocatalysts induce the formation of electron-hole pairs capable of producing a cascade of reactions suitable …
Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home prepared titanium dioxide
2008
In this paper some intrinsic electronic properties of home prepared (HP) TiO2 catalysts were investigated by diffuse reflectance spectroscopy and quasi-Fermi level measurements. These powders were used for carrying out the photocatalytic oxidation of benzyl alcohol to benzaldehyde and CO2 in water; the selectivity for aldehyde formation was enhanced by the addition of small amounts of ethanol, a typical hole trap. The values of band gap, valence band and conduction band edges are almost identical for all the HP samples in which anatase phase is predominant, whereas appreciable differences can be noticed for an HP sample containing high amount of rutile phase. A comparative ATR-FTIR study of…
Superhydrophobic TiO2/Fluorinated Polysiloxane Hybrid Coatings with Controlled Morphology for Solar Photocatalysis
2021
Abstract Technological applications of polysiloxane coatings have been influenced by their intrinsic low surface energy, which increases their water repellence. Accurate control of composition and interfacial properties through the introduction of perfluorinated moieties further lowers the polysiloxane surface energy, while mixing with metal oxide nanoparticles enhances roughness, resulting in a great potential in the development of superhydrophobic materials for photocatalysis. Herein, a series of hydrophobic and superhydrophobic hybrid coatings were prepared by dehydrocoupling and hydrosilylation reactions of polymethylhydrosiloxane with 1H,1H,2H,2H‐perfluorooctyltriethoxysilane and 1,3-d…
Photocatalytic Selective Oxidation of 4-Methoxybenzyl Alcohol to Aldehyde in Aqueous Suspension of Home-Prepared Titanium Dioxide Catalyst
2007
WOS: 000246040000026
Photoreactivity of Iron-Doped Titanium Dioxide Powders for Dinitrogen Reduction to Ammonia
1989
The production of NH3 from N2 and H2O on Fe/TiO2 has been studied in a continuous photoreactor under UV radiation. An ESR study of the catalysts shows that Fe3+ ions are better electron traps than Ti4+ ions. This trapping can be irreversible if the corresponding holes originate stable species adsorbed on the catalyst surface. The charge separation, thus favoured by the Fe3+ ions, helps the N2 adsorption by its reaction with surface species activated by holes. The best activity is found when no excess Fe is segregated at the surface; overall turnover for N2 reduction as high as 6 e−/Fe atom can be reached before catalyst deactivation.
Influence of hydrogen peroxide on the kinetics of phenol photodegradation in aqueous titanium dioxide dispersion
1990
Abstract The influence of hydrogen peroxide on the phenol photodegradation rate under near UV radiation was investigated in homogeneous and heterogeneous systems: the heterogeneous systems were aqueous dispersions of titanium dioxide (anatase). The hydrogen peroxide photodecomposition reaction was also investigated for all the systems used. The highest rate of phenol photodegradation was observed in the heterogeneous system for the contemporary presence of hydrogen peroxide and oxygen. The rate equations for phenol photodegradation and hydrogen peroxide photodecomposition for both systems were obtained. A mechanistic model able to explain the main experimental results is also proposed.