Search results for "Tp"

showing 10 items of 4688 documents

Exploring diversity and biotechnological potential of lactic acid bacteria from tocosh - traditional Peruvian fermented potatoes - by high throughput…

2018

Lactic acid bacteria (LAB) diversity associated with tocosh, Peruvian traditional fermented potatoes, was for the first time investigated by culturing and high throughput sequencing (HTS) approaches. They were applied on three samples i.e. freshly harvested potatoes, one-month and eight-months production. While by culture-dependent approach a few Lactobacillus (Lb) species (Lb. sakei, Lb. casei, Lb. farciminis, Lb. brevis, Lb. fermentum) and Leuconostoc (Ln) mesenteroides were identified, twenty-four OTUs belonging to six LAB genera were considered in tocosh samples by HTS, being Lactobacillus dominant in all three samples. LAB predominated on fresh potatoes, while Clostridium, Zymophilus a…

0301 basic medicineBacterial Diversity030106 microbiologyPopulationMicrobiologyCiencias Biológicas//purl.org/becyt/ford/1 [https]Lactic Acid Bacteria03 medical and health scienceschemistry.chemical_compoundClostridiumBiología Celular MicrobiologíaLactobacillusLeuconostocAmylaseFood scienceTocosh//purl.org/becyt/ford/1.6 [https]educationeducation.field_of_studybiologyfood and beveragesbiology.organism_classificationLactic acidBiotechnological Potential030104 developmental biologychemistrybiology.proteinFermentationHigh Throughput Sequencing (Hts)CIENCIAS NATURALES Y EXACTASBacteriaFood ScienceLWT
researchProduct

The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor

2021

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of …

0301 basic medicineBiFC bimolecular fluorescence complementationMST microscale thermophoresisPDIA1 protein disulfide isomerase family A member 1ApoptosisNEUROTROPHIC FACTOR MANFEndoplasmic ReticulumBiochemistryprotein-protein interactionMiceBimolecular fluorescence complementationUPR unfolded protein responseENDOPLASMIC-RETICULUM STRESSMesencephalonNeurotrophic factorsInsulin-Secreting CellsProtein Interaction MappingBINDINGCOMPREHENSIVE RESOURCEATF6unfolded protein response (UPR)PDIA6 protein disulfide isomerase family A member 6PPIs protein-protein interactionsEndoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsNPTN neuroplastinbiologyChemistryapoptosisunfolded protein responsedopamine neurons3. Good healthCell biologyGDNF glial cell line–derived neurotrophic factorIRE1-ALPHASBD substrate-binding domainendoplasmic reticulum stressMANF mesencephalic astrocyte-derived neurotrophic factorTm tunicamycinneuroprotectionResearch ArticleProtein BindingSignal TransductionGRP78Protein Disulfide-Isomerase FamilyCell SurvivalTH tyrosine hydroxylasePrimary Cell CultureSCG superior cervical ganglionProtein Disulfide-IsomerasesIRE1 inositol-requiring enzyme 1ER-STRESSER endoplasmic reticulum03 medical and health sciencesohjelmoitunut solukuolemaC-MANF C-terminal domain of MANFCSPs chemical shift perturbationsAnimalsHumansHSP70 Heat-Shock ProteinsNerve Growth FactorsNBD nucleotide-binding domainNMR nuclear magnetic resonanceMolecular Biology030102 biochemistry & molecular biologyBIPATF6Dopaminergic NeuronsGene Expression ProfilingBinding proteinneuronal cell deathDISSOCIATIONCell BiologyNEI nucleotide exchange inhibitorEmbryo MammalianadenosiinitrifosfaattiATPhermosolutmesencephalic astrocyte-derived neurotrophic factorprotein–protein interactionPERK protein kinase RNA-like ER kinaseHEK293 Cells030104 developmental biologyGene Expression RegulationChaperone (protein)Tg thapsigarginbiology.proteinUnfolded protein responseAP-MS affinity purification mass spectrometry1182 Biochemistry cell and molecular biologyGFP-SH SH-tagged GFPendoplasmic reticulum stress (ER stress)DA dopaminemesencephalic astrocyte-derived neurotrophic factor (MANF)proteiinitNeuroplastin
researchProduct

Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Ca…

2018

Abstract Background Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). Results Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane…

0301 basic medicineBioaugmentationlcsh:BiotechnologyBiogasBiomassLignocellulosic biomassBiomassa010501 environmental sciencesManagement Monitoring Policy and LawMethanothermobacterBiotecnologia01 natural sciencesApplied Microbiology and Biotechnologylcsh:FuelMethane03 medical and health scienceschemistry.chemical_compoundBioaugmentationlcsh:TP315-360BiogasCellulolytic bacteriaAnaerobic digestionlcsh:TP248.13-248.65Food scienceSteam-explosion pretreatmentCaldicellulosiruptor bescii0105 earth and related environmental sciencesbiologyRenewable Energy Sustainability and the Environmentbiology.organism_classificationAnaerobic digestion030104 developmental biologyGeneral EnergychemistryCaldicellulosiruptor besciiBiotechnology
researchProduct

Double methylation of tRNA-U54 to 2′-O-methylthymidine (Tm) synergistically decreases immune response by Toll-like receptor 7

2018

Abstract Sensing of nucleic acids for molecular discrimination between self and non-self is a challenging task for the innate immune system. RNA acts as a potent stimulus for pattern recognition receptors including in particular human Toll-like receptor 7 (TLR7). Certain RNA modifications limit potentially harmful self-recognition of endogenous RNA. Previous studies had identified the 2′-O-methylation of guanosine 18 (Gm18) within tRNAs as an antagonist of TLR7 leading to an impaired immune response. However, human tRNALys3 was non-stimulatory despite lacking Gm18. To identify the underlying molecular principle, interferon responses of human peripheral blood mononuclear cells to differentia…

0301 basic medicineBiology[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMethylation03 medical and health sciencesRNA TransferInterferonNucleic Acids[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]RNA and RNA-protein complexesGeneticsmedicineHumansComputingMilieux_MISCELLANEOUSToll-like receptorInnate immune systemGuanosine030102 biochemistry & molecular biologyPattern recognition receptorRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyTLR7Immunity InnateCell biology030104 developmental biologyToll-Like Receptor 7Transfer RNALeukocytes MononuclearNucleic acid[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]InterferonsHydrogenThymidinemedicine.drug
researchProduct

A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus…

2016

12 pages; International audience; The sea urchin endoskeleton consists of a magnesium-rich biocalcite comprising a small amount of occluded organic macromolecules. This structure constitutes a key-model for understanding the mineral - organics interplay, and for conceiving in vitro bio-inspired materials with tailored properties. Here we employed a deep-clean technique to purify the occluded proteins from adult Paracentrotus lividus tests. We characterized them by 1- and 2D-electrophoreses, ELISA and immunoblotting, and using liquid chromatography coupled with Mass Spectrometry (nanoLC-MS/MS), we identified two metalloenzymes (carbonic anhydrase and MMP), a set of MSP130 family members, sev…

0301 basic medicineBiomineralizationProteomicsSea urchinBiophysicsMatrix (biology)ProteomicsBiochemistryMineralization (biology)Paracentrotus lividusMass Spectrometry03 medical and health sciences0302 clinical medicinebiology.animal[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Animals[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsSea urchinExtracellular Matrix ProteinsCarbonic anhydrasebiologyChemistryCalcitebiology.organism_classification[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/BiomaterialsIn vitroExtracellular MatrixCalcifying matrixC-type lectin030104 developmental biologyBiochemistry[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Paracentrotus030217 neurology & neurosurgeryMacromoleculeBiomineralization
researchProduct

Unsaturated Oral Fat Load Test Improves Glycemia, Insulinemia and Oxidative Stress Status in Nondiabetic Subjects with Abdominal Obesity.

2016

Aims To evaluate the changes in glycemia, insulinemia, and oxidative stress markers during an oral fat load test in nondiabetic subjects with abdominal obesity and to analyze the association between postprandial oxidative stress markers and postprandial glucose and insulin responses. Methods We included 20 subjects with abdominal obesity (waist circumference > 102 cm for men and > 88 cm for women) and 20 healthy lean controls (waist circumference < 102 cm for men and < 88 cm for women). After 12 hours of fasting we performed a standardized fat load test (0–8 hours) with supracal® (50 g/m2). We determined metabolic parameters, oxidized and reduced glutathione, and malondialdehyde. Results In…

0301 basic medicineBlood GlucoseMalePhysiologymedicine.medical_treatmentlcsh:MedicineBiochemistryFatschemistry.chemical_compound0302 clinical medicineEndocrinologyMalondialdehydeMedicine and Health SciencesInsulinlcsh:ScienceAbdominal obesityMultidisciplinaryOrganic CompoundsMonosaccharidesMiddle AgedMalondialdehydePostprandial PeriodGlutathioneLipidsChemistryPostprandialCholesterolPhysiological ParametersObesity AbdominalPhysical SciencesFemalemedicine.symptomResearch ArticleAdultmedicine.medical_specialtyWaistAdolescentLipoproteinsCarbohydrates030209 endocrinology & metabolism03 medical and health sciencesYoung AdultInsulin resistanceInternal medicinemedicineHumansObesityAgedDiabetic EndocrinologyEndocrine Physiologybusiness.industryInsulinUnsaturated fatlcsh:RBody WeightOrganic ChemistryChemical CompoundsBiology and Life SciencesProteinsCell Biologymedicine.diseaseObesityHormonesFats UnsaturatedOxidative Stress030104 developmental biologyEndocrinologyGlucosechemistryCase-Control Studieslcsh:QInsulin ResistancebusinessPloS one
researchProduct

Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition

2017

Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein-coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin aIIbb3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies. We ap…

0301 basic medicineBlood PlateletsPHOSPHATASEImmunologyBlotting WesternUBIQUITINATIONBINDING PROTEIN STXBP5Biochemistry03 medical and health scienceschemistry.chemical_compoundGTP-binding protein regulatorsP2Y12HumansProtein phosphorylationPlatelet activationIloprostPHOSPHORYLATIONCOMBINATIONChemistryPhosphoproteomicsPATHWAYSCell BiologyHematologyPlatelet ActivationSIGNALING REVEALSCell biologyAdenosine DiphosphateAdenosine diphosphate030104 developmental biologyCLOPIDOGRELPhosphorylationPROTEOMICSSECRETIONSignal transductionPlatelet Aggregation InhibitorsSignal TransductionBlood
researchProduct

Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model

2016

International audience; The metabolic syndrome (MetS) greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL) in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD). By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertrigl…

0301 basic medicineCD36 Antigens[SDV]Life Sciences [q-bio]lcsh:Medicine030204 cardiovascular system & hematologyLipoprotein MetabolismMice0302 clinical medicineIntestinal mucosaHyperinsulinemiaIntestinal Mucosalcsh:ScienceMetabolic Syndromeeducation.field_of_studyMultidisciplinaryIntestinal lipid absorption3. Good healthPostprandialChain Fatty-Acidslipids (amino acids peptides and proteins)Research ArticleNonfasting Triglyceridesmedicine.medical_specialtyPopulationTransportDistal IntestineBiologyDiet High-FatAbsorption03 medical and health sciencesInsulin resistanceInternal medicineHyperinsulinismmedicineAnimalsCholesterol UptakeObesityeducationSecretion[ SDV ] Life Sciences [q-bio]Insulin-Resistancelcsh:RHypertriglyceridemiaLipid metabolismmedicine.diseaseLipid MetabolismDisease Models Animal030104 developmental biologyEndocrinologyGene Expression Regulationlcsh:Q[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

The receptor protein tyrosine phosphatase PTPRJ negatively modulates the CD98hc oncoprotein in lung cancer cells.

2018

PTPRJ, a receptor protein tyrosine phosphatase strongly downregulated in human cancer, displays tumor suppressor activity by negatively modulating several proteins involved in proliferating signals. Here, through a proteomic-based approach, we identified a list of potential PTPRJ-interacting proteins and among them we focused on CD98hc, a type II glycosylated integral membrane protein encoded by SLC3A2, corresponding to the heavy chain of a heterodimeric transmembrane amino-acid transporter, including LAT1. CD98hc is widely overexpressed in several types of cancers and contributes to the process of tumorigenesis by interfering with cell proliferation, adhesion, and migration. We first valid…

0301 basic medicineCD98hcChemistryCell growthCellPTPRJProtein tyrosine phosphatasemedicine.disease_causeProtein tyrosine phosphatase03 medical and health scienceschemistry.chemical_compound030104 developmental biologymedicine.anatomical_structureProteasomal degradationOncologyMG132Cancer cellCancer researchmedicineProteasome inhibitorGene silencingLung cancerCarcinogenesismedicine.drugResearch Paper
researchProduct

The role of Plasma Membrane Calcium ATPases (PMCAs) in neurodegenerative disorders

2017

Selective degeneration of differentiated neurons in the brain is the unifying feature of neurodegenerative disorders such as Parkinson's disease (PD) or Alzheimer's disease (AD). A broad spectrum of evidence indicates that initially subtle, but temporally early calcium dysregulation may be central to the selective neuronal vulnerability observed in these slowly progressing, chronic disorders. Moreover, it has long been evident that excitotoxicity and its major toxic effector mechanism, neuronal calcium overload, play a decisive role in the propagation of secondary neuronal death after acute brain injury from trauma or ischemia. Under physiological conditions, neuronal calcium homeostasis is…

0301 basic medicineCalcium pumpExcitotoxicitychemistry.chemical_elementCalciumProtein oxidationmedicine.disease_causeProtein Structure SecondaryPlasma Membrane Calcium-Transporting ATPases03 medical and health sciences0302 clinical medicinemedicineAnimalsHumansPhylogenyCalcium metabolismMembrane potentialChemistryGeneral NeuroscienceNeurodegenerationNeurodegenerative Diseasesmedicine.diseaseCytosol030104 developmental biologyNeuroscience030217 neurology & neurosurgeryNeuroscience Letters
researchProduct