Search results for "Tracking"

showing 10 items of 709 documents

Forward tracking at the next e+ e- collider part II: Experimental challenges and detector design

2013

Published under the terms of the Creative Commons Attribution 3.0 License.

Particle physicsHighly Granular Calorimetry [9.5]Tracking (particle physics)01 natural sciences7. Clean energylaw.inventionlawParticle tracking detectors0103 physical sciencesDetectors and Experimental Techniques010306 general physicsColliderInstrumentationMathematical PhysicsAdvanced infrastructures for detector R&D [9]PhysicsRange (particle radiation)Series (mathematics)010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsDetectorTracking systemCharged particleParticle tracking detectors (Solid-state detectors)High Energy Physics::ExperimentbusinessEnergy (signal processing)
researchProduct

Measurements of the branching fractions and bounds on the charge asymmetries of charmless three-body charged B decays.

2003

We present measurements of branching fractions and charge asymmetries for charmless B-meson decays to three-body final states of charged pions and kaons. The analysis uses 81.8 fb^-1 of data collected at the Upsilon(4S) resonance with the BaBar detector at the SLAC PEP-II asymmetric B Factory. We measure the branching fractions B(B+ -> pi+ pi- pi+) = (10.9 +/- 3.3 +/- 1.6) x 10^-6, B(B+ -> K+ pi- pi+) = (59.1 +/- 3.8 +/- 3.2) x 10^-6, and B(B+ -> K+ K- K+) = (29.6 +/- 2.1 +/- 1.6) x 10^-6, and provide 90% C.L. upper limits for other decays. We observe no charge asymmetries for these modes.

Particle physicsMesonBABARHadronCharged particleGeneral Physics and AstronomyFOS: Physical sciencesElementary particlePARTICLE PHYSICS; PEP2; BABAR01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsParticle decayHigh Energy Physics - Experiment (hep-ex)PionSEARCH0103 physical sciencesPEP2[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]B meson010306 general physicsProbabilityPhysics010308 nuclear & particles physicsBranching fractionCerenkov counterComputer simulationB-factoryMonte Carlo methodParticle beamNuclear physicPARTICLE PHYSICSBranching fractionStorage ringParticle beam trackingPhysical review letters
researchProduct

The beam and detector of the NA62 experiment at CERN

2017

NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the $K^{+} \rightarrow \pi^{+} \nu \bar\nu$ decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early …

Particle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical scienceslarge detector systems for particle and astroparticle physicsCalorimeters; Cherenkov detectors; Large detector systems for particle and astroparticle physics; Particle tracking detectors; Instrumentation; Mathematical PhysicsNA62 experimentTracking (particle physics)7. Clean energy01 natural sciencesParticle detectorHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNONuclear physicsmathematical physicsHigh Energy Physics - Experiment (hep-ex)Calorimeters0103 physical sciencesparticle tracking detectorsDetectors and Experimental Techniques010306 general physicsParticle Physicsphysics.ins-detCalorimeters; Cherenkov detectors; large detector systems for particle and astroparticle physics; particle tracking detectors; instrumentation; mathematical physicsPhysicsinstrumentationCalorimeterLarge Hadron Collider010308 nuclear & particles physicsBranching fractionhep-exDetectorCherenkov detectorsInstrumentation and Detectors (physics.ins-det)Particle tracking detectorBeamlineLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentBeam (structure)Particle Physics - ExperimentCherenkov detector
researchProduct

Axion search with BabyIAXO in view of IAXO

2020

Axions are a natural consequence of the Peccei-Quinn mechanism, the most compelling solution to the strong-CP problem. Similar axion-like particles (ALPs) also appear in a number of possible extensions of the Standard Model, notably in string theories. Both axions and ALPs are very well motivated candidates for Dark Matter, and in addition, they would be copiously produced at the sun's core. A relevant effort during the last decade has been the CAST experiment at CERN, the most sensitive axion helioscope to-date. The International Axion Observatory (IAXO) is a large-scale 4th generation helioscope. As its primary physics goal, IAXO will look for solar axions or ALPs with a signal to backgro…

Particle physicsPhysics - Instrumentation and Detectorssolar axion[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]experimental methodsDark matterFOS: Physical sciences7. Clean energyString (physics)Standard Modelaxion helioscopedesign [detector]International Axion Observatory (IAXO)ObservatoryPeccei-Quinn mechanismDark Matterdetector design[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental TechniquesAxionsun-tracking systemsphysics.ins-detactivity reportdetector: designPhysicsinstrumentationHelioscopeLarge Hadron Colliderdetectorsolar [axion]DESYInstrumentation and Detectors (physics.ins-det)[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]IAXOmagnetopticsaxion: solar
researchProduct

WiseNET : an indoor multi-camera multi-space dataset with contextual information and annotations for people detection and tracking

2019

Nowadays, camera networks are part of our every-day life environments, consequently, they represent a massive source of information for monitoring human activities and to propose new services to the building users. To perform human activity monitoring, people must be detected and the analysis has to be done according to the information relative to the environment and the context. Available multi-camera datasets furnish videos with few (or none) information of the environment where the network was deployed. The proposed dataset provides multi-camera multi-space video sets along with the complete contextual information of the environment. The dataset regroups 11 video sets (composed of 62 sin…

People detectionlcsh:Computer applications to medicine. Medical informatics[SPI]Engineering Sciences [physics]Indoor multi-camera multi-space datasetComputer ScienceContextual informationlcsh:R858-859.7People trackingBIMlcsh:Science (General)[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingComputingMilieux_MISCELLANEOUSlcsh:Q1-390[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
researchProduct

All Eyes on Me

2020

Duo musicians exhibit a broad variety of bodily gestures, but it is unclear how soloists’ and accompanists’ movements differ and to what extent they attract observers’ visual attention. In Experiment 1, seven musical duos’ body movements were tracked while they performed two pieces in two different conditions. In a congruent condition, soloist and accompanist behaved according to their expected musical roles; in an incongruent condition, the soloist behaved as accompanist and vice versa. Results revealed that behaving as soloist, regardless of the condition, led to more, smoother, and faster head and shoulder movements over a larger area than behaving as accompanist. Moreover, accompanists …

Perceptionmedia_common.quotation_subjectEye movementEye trackingMotor controlVisual attentionMusicalPsychologyMusicCognitive psychologyGesturemedia_commonMusic Perception
researchProduct

A software receiver phase lock loop analysis and design to implement adaptive phase tracking using a finite impulse response loop filter

2009

In this paper we analyze the design of a digital Phase Lock Loop (PLL) for a Global Navigation Satellite System (GNSS) software receiver. Even if the topic of phase tracking has been widely studied, we found it useful to provide a short walkthrough for the design of a PLL in a real software receiver, avoiding to introduce the common theoretical phase-based model and aiming to the practical implementation of a system that deals with frequencies. Nonetheless, our analysis and design will grow away from the canonical approach, in the way that we will not resort to analog filter theory. The result is a PLL which is more reactive than the ones usually found in literature and that implements a si…

Phase lock loop software receiver trackingSettore ING-INF/03 - TelecomunicazioniGNSS PLL
researchProduct

Control of photoassociation of atomic Bose-Einstein condensates by laser field configuration

2016

In this work we show that it is to perform an efficient adiabatic passage in a basic quadratic-nonlinear quantum two-state system describing weakly bound molecule formation in atomic Bose-Einstein condensates through photoassociation by laser fields. An efficient adiabatic transfer is also possible if the third-order nonlinearities describing the atom-atom, atom-molecule, and molecule-molecule elastic scattering are taken into account. The transfer is achieved by choosing a proper detuning derived by solving the inverse problem.We also show that one can perform a stimulated Raman exact tracking in a quadratic-nonlinear quantum three-state system.The irreversible losses from the intermediate…

Photo-associationCondensats de Bose-Einstein moléculairesExact trackingMolecular Bose-Einstein condensatesBi-confluent Heun functionsSuivi exact[PHYS.PHYS] Physics [physics]/Physics [physics]Nonlinear adiabatic trackingSuivi adiabatique non-linéaireFonctions bi-confluentes de HeunMagneto-association
researchProduct

Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array

2013

NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and "blob" regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent e…

PhotomultiplierMECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhysics - Instrumentation and DetectorsPhysical measurementsParticle tracking detectors (Gaseous detectors)Time projection chambersPattern recognition SystemsFísica -- Mesuramentschemistry.chemical_elementFOS: Physical sciencesTracking (particle physics)01 natural sciences7. Clean energyTECNOLOGIA ELECTRONICAXenonSilicon photomultiplierOpticsCluster analysisDouble beta decayPattern recognition0103 physical sciencesCalibrationReconeixement de formes (Informàtica)Calibratge010306 general physicsInstrumentationImage resolutionMathematical PhysicsDetectors de radiacióPhysicsCalibration and fitting methods010308 nuclear & particles physicsbusiness.industryDetectorCluster findingFísicaInstrumentation and Detectors (physics.ins-det)Double-beta decay detectorsAnàlisi de conglomeratschemistryNuclear countersCalibrationbusiness
researchProduct

Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

2011

The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which i…

PhotonCiências Naturais::Ciências Físicastransition radiation detectors ; calorimeters ; large detector systems for particle and astroparticle physics ; particle tracking detectors ; solid-state detectorsPhysics::Instrumentation and Detectors:Ciências Físicas [Ciências Naturais]Transition radiation detectorsddc:500.201 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicsCalorimetersOpticsAtlas (anatomy)0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]WaferDetectors and Experimental Techniques010306 general physicsInstrumentationMathematical PhysicsPhysicsLarge Hadron ColliderScience & Technology010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsDetectorSettore FIS/01 - Fisica SperimentaleCalorimetermedicine.anatomical_structureParticle tracking detectors (Solid-state detectors)High Energy Physics::ExperimentbusinessEnergy (signal processing)Beam (structure)
researchProduct