Search results for "Tracking"
showing 10 items of 709 documents
In-beam spectroscopy with intense ion beams: Evidence for a rotational structure in246Fm
2012
The rotational structure of ${}^{246}$Fm has been investigated using in-beam $\ensuremath{\gamma}$-ray spectroscopic techniques. The experiment was performed using the JUROGAMII germanium detector array coupled to the gas-filled recoil ion transport unit (RITU) and the gamma recoil electron alpha tagging (GREAT) focal plane detection system. Nuclei of ${}^{246}$Fm were produced using a 186 MeV beam of ${}^{40}$Ar impinging on a ${}^{208}$Pb target. The JUROGAMII array was fully instrumented with Tracking Numerical Treatment 2 Dubna (TNT2D) digital acquisition cards. The use of digital electronics and a rotating target allowed for unprecedented beam intensities of up to 71 particle-nanoamper…
Comparison of Intensity-based B-splines and Point-to-Pixel Tracking Techniques for Motion Reduction in Optical Mapping
2016
Suppression of motion artifacts (MA) in cardiac optical mapping usually requires uncoupling of cardiac contraction by restriction techniques, which are known to have important effects on cardiac physiology deteriorating the quality of acquisitions and their interpretation. In this study, we propose to assess the performance of two independent intensity-based post-processing strategies to minimize MAs during registration. A point-to-pixel block-matching classical similarity-based tracking with displacement interpolation is compared to a well-known non-rigid registration algorithm where the deformation field is obtained using cubic splines. Both strategies were tested on synthetic and real op…
Graph-based minimal path tracking in the skeleton of the retinal vascular network
2012
This paper presents a semi-automatic framework for minimal path tracking in the skeleton of the retinal vascular network. The method is based on the graph structure of the vessel network. The vascular network is represented based on the skeleton of the available segmented vessels and using an undirected graph. Significant points on the skeleton are considered nodes of the graph, while the edge of the graph is represented by the vessel segment linking two neighboring nodes. The graph is represented then in the form of a connectivity matrix, using a novel method for defining vertex connectivity. Dijkstra and Floyd-Warshall algorithms are applied for detection of minimal paths within the graph…
Development and calibration of the tracking Compton/Pair telescope MEGA
2005
Abstract We describe the development and tests of the prototype for a new telescope for Medium Energy Gamma-ray Astronomy (MEGA) in the energy band 0.4–50 MeV. As a successor to COMPTEL and EGRET (at low energies), MEGA aims to improve the sensitivity for astronomical sources by at least an order of magnitude. It could thus fill the severe sensitivity gap between scheduled or operating hard-X-ray and high-energy gamma-ray missions and open the way for a future Advanced Compton Telescope. MEGA records and images γ-rays by completely tracking Compton and Pair creation events in a stack of double-sided Si-strip track detectors surrounded by a pixelated CsI calorimeter. A scaled down prototype …
Efficiency studies for a tracking detector based on square 1.5m long scintillating fibers read out by SiPM
2009
Abstract A tracking detector based on 1.5 m long scintillating fibers is being developed for the electron arm of the KAOS spectrometer at the Mainz Microtron MAMI. Measurements on light attenuation, particle detection efficiencies and accidental coincidence rates with a prototype set-up using 2 × 2 mm 2 fibers read out by silicon photomultipliers (SiPM) are presented. The highest efficiency at the lowest accidental coincidence rate was reached for high trigger thresholds at the largest SiPM bias voltages. The influence of signal attenuation and dispersion on detection efficiencies is discussed. The results are in good agreement with a Monte Carlo model that was used to predict detector char…
Dynamics of Colloidal Hard Spheres in Thin Aqueous Suspension Layers—Particle Tracking by Digital Image Processing and Brownian Dynamics Computer Sim…
1993
Abstract A new experimentally simple technique is introduced for studying dynamical properties of hard sphere colloids in thin aqueous suspension layers by light-microscopy observation supported by computer-aided digital image processing. The thickness of the layers of the colloidal samples confined between two smooth glass plates is accurately adjusted by monodisperse "spacer" spheres which are larger than the diffusing spheres. Tracking of single particles in concentrated phases is accomplished using fluorescence light microscopy where a few dyed particles are mixed with the undyed colloidal spheres of the same size. First results are presented for the self-diffusion coefficient—(i) in ve…
Demonstration of remote optical measurement configuration that correlates to glucose concentration in blood
2010
An optical approach allowing the extraction and the separation of remote vibration sources has recently been proposed. The approach has also been applied for medical related applications as blood pressure and heart beats monitoring. In this paper we demonstrate its capability to monitor glucose concentration in blood stream. The technique is based on the tracking of temporal changes of reflected secondary speckle produced in human skin (wrist) when being illuminated by a laser beam. A temporal change in skin’s vibration profile generated due to blood pulsation is analyzed for estimating the glucose concentration. Experimental tests that were carried out in order to verify the proposed appro…
Particle tracking in kaon electroproduction with cathode-charge sampling in multi-wire proportional chambers
2011
Abstract Wire chambers are routinely operated as tracking detectors in magnetic spectrometers at high-intensity continuous electron beams. Especially in experiments studying reactions with small cross-sections the reaction yield is limited by the background rate in the chambers. One way to determine the track of a charged particle through a multi-wire proportional chamber (MWPC) is the measurement of the charge distribution induced on its cathodes. In practical applications of this read-out method, the algorithm to relate the measured charge distribution to the avalanche position is an important factor for the achievable position resolution and for the track reconstruction efficiency. An al…
Probing ultrafast thermalization with field-free molecular alignment
2012
International audience; The rotation-translation thermalization of CO2 gas is investigated 500 ps after its preheating by a nonresonant short and intense laser pulse. The temperature of thermalization is optically determined with two additional short laser pulses enabling a field-free molecular alignment process and its probing, respectively. The measurements are performed for various intensities of the preheat pulse, leading to the observation of different temperatures which are in very good agreement with classical molecular dynamics simulations. The results can be regarded as a step towards real-time tracking of ultrafast relaxation pathways in molecular motion.
On Gauss and Gaussian Legends: A Quiz
2018
For the last few years, students in my history of mathematics course have been required to do a bit of research on the web. Each of them chooses from a list of specially chosen questions designed to make them ponder whether the information they find on standard internet sites is solidly grounded and clearly sourced, or whether subsequent research (pursued in such unlikely places as the local university library) might lead a person to doubt what one reads online. The idea here is not to push for a definitive answer; in many cases, this would be a hopeless undertaking anyway. Instead, I ask students merely to report on what they found and how they went about tracking down the information cite…