Search results for "Trapped ion quantum computer"

showing 7 items of 17 documents

Observing the phase space trajectory of an entangled matter wave packet

2010

We observe the phase space trajectory of an entangled wave packet of a trapped ion with high precision. The application of a spin dependent light force on a superposition of spin states allows for coherent splitting of the matter wave packet such that two distinct components in phase space emerge. We observe such motion with a precision of better than 9% of the wave packet extension in both momentum and position, corresponding to a 0.8 nm position resolution. We accurately study the effect of the initial ion temperature on the quantum entanglement dynamics. Furthermore, we map out the phonon distributions throughout the action of the displacement force. Our investigation shows corrections t…

PhysicsQuantum PhysicsWave packetCavity quantum electrodynamicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmasPhase spaceQuantum mechanicsQubit0103 physical sciencesMatter waveW stateQuantum Physics (quant-ph)010306 general physicsQuantum teleportationTrapped ion quantum computer
researchProduct

Driven Appearance and Disappearance of Quantum Zeno Effect in the Dynamics of a Four-level Trapped Ion

2001

An example of constrained unitary quantum dynamics in the context of trapped ions is given. We study a laser driven four-level ion system confined in an isotropic three-dimensional Paul microtrap. Our main result is that when two independent controllable continuous measurement processes are simultaneously present, the unitary quantum dynamics of the system can be parametrically frozen into a one-dimensional Hilbert subspace (Quantum Zeno Effect) or constrained into a two-dimensional one, at will. Conditions under which one of the two processes acts upon the physical system inhibiting the effects due to the other one, are explicitly found and discussed (Hierarchically Controlled Dynamics).

PhysicsQuantum mechanicsQuantum dynamicsIsotropyPhysical systemCavity quantum electrodynamicsGeneral Physics and AstronomyContext (language use)Trapped ion quantum computerIonQuantum Zeno effectFortschritte der Physik
researchProduct

Quantum Computing Experiments with Cold Trapped Ions

2016

PhysicsQuantum technologyQuantum networkOpen quantum systemQubitQuantum dynamicsCavity quantum electrodynamicsQuantum simulatorAtomic physicsTrapped ion quantum computerQuantum Information
researchProduct

Quantum Computing with Trapped Charged Particles

2009

The concept of quantum computing has no clear cut origin. It emerged from combinations of information theory and quantum mechanical concepts. A decisive step was taken by Feynman [414, 415] who considered the possibility of universal simulation, a quantum system which could simulate the physical behavior of any other. Feynman gave arguments which suggested that quantum evolution could be used to compute certain problems more efficiently than any classical computer. His device may be considered as not sufficiently specified to be called a computer. The next important step was taken in 1985 by Deutsch [310]. His proposal is generally considered to represent the first blueprint for a quantum c…

Quantum gateTheoretical computer scienceControlled NOT gateComputer scienceCavity quantum electrodynamicsQuantum systemCoherent statesQuantumTrapped ion quantum computerQuantum computer
researchProduct

Quantum-state manipulation via quantum nondemolition measurements in a two-dimensional trapped ion

2001

The quantum nondemolition measurement is applied to a two-dimensional (2D) trapped-ion model in which two laser beams drive the corresponding vibrational motions and are carrier resonant with the two-level system of the ion. The information about the ionic vibrational energy can be detected by the occupation probability of the internal electronic level. The substantial difference of the 2D model from the one-dimensional one is that two orthogonal beams have a fixed phase shift instead of statistical independence. As a result, the atomic Rabi oscillation is involved in the coherent superposition of two sub-Rabi oscillations induced by the corresponding driving beams. This means that, in the …

Quantum nondemolition measurementPhysicsQuantum opticsRabi cycleQuantum stateQuantum mechanicsCavity quantum electrodynamicsCoherent statesPhysics::Atomic PhysicsAtomic and Molecular Physics and OpticsTrapped ion quantum computerRabi frequency
researchProduct

Quantum Nondemolition Measurement and Quantum State Manipulation in Two Dimensional Trapped Ion

2001

An extension of QNDmeasuremen t of the vibrational energy of the trapped ion from one dimensional case to the bidimensional one is presented. Our approach exploits the fixed phase difference existing between the two orthogonal and appropriately configured classical laser beams determining the vibronic coupling. We in fact show that this phase difference may play the role of an adjustable external parameter which allows to optimize the measurement scheme itself in terms of both precision and sensitivity. Our proposal provides a cooling method for the trapped ion from the vibrational thermal state. Due to the coherent superposition of two sub Rabi oscillations, the Rabi frequency degeneration…

Quantum nondemolition measurementPhysicsSuperposition principleRabi cycleQuantum stateQuantum mechanicsCavity quantum electrodynamicsCoherent statesTrapped ion quantum computerRabi frequency
researchProduct

Colloquium: Trapped ions as quantum bits -- essential numerical tools

2009

Trapped, laser-cooled atoms and ions are quantum systems which can be experimentally controlled with an as yet unmatched degree of precision. Due to the control of the motion and the internal degrees of freedom, these quantum systems can be adequately described by a well known Hamiltonian. In this colloquium, we present powerful numerical tools for the optimization of the external control of the motional and internal states of trapped neutral atoms, explicitly applied to the case of trapped laser-cooled ions in a segmented ion-trap. We then delve into solving inverse problems, when optimizing trapping potentials for ions. Our presentation is complemented by a quantum mechanical treatment of…

Quantum opticsPhysicsCondensed Matter::Quantum GasesQuantum PhysicsFOS: Physical sciencesGeneral Physics and AstronomyQuantum simulator01 natural sciences010305 fluids & plasmasOpen quantum systemQuantum gateClassical mechanics0103 physical sciencesPersonal computerPhysics::Atomic PhysicsQuantum informationQuantum Physics (quant-ph)010306 general physicsWave functionTrapped ion quantum computer
researchProduct