Search results for "Triazole"
showing 10 items of 347 documents
1,2,4-Triazole Schiff base directed synthesis of polynuclear iron complexes: Investigating the magnetic properties going from a dimer to a 1D chain t…
2018
Abstract Based on two functionalized Schiff base ligands 4-(1H-imidazol-5-ylmethylene-amino)-4H-1,2,4-triazole (imztrz) and 4-(p-tolylidene-amino)-4H-1,2,4-triazole (toltrz), a series of three triazole based polynuclear Fe complexes has been prepared. Compounds {[FeII(toltrz)2(C2O4)]·10H2O}n (1) and {[FeII(5-imztrz)(C2O4)]·2H2O}n (2) are oxalate bridged FeII complexes with 1 showing a linear 1D chain structure and 2 exhibiting a zigzag chain based 3D interpenetrating framework. Both structures show rather big voids in the 3D architecture (∼15% of the crystal volume). Compound (5-imztrzH)2[FeIII2(cit4−)2(H2O)2]·6H2O (3) is a binuclear FeIII complex bridging by two citrate ligands to form a f…
Fe II Complexes with Triple N 1, N 2‐Triazole Bridge Schiff Base Ligand: Antiferromagnetic Dimer vs. Spin Conversion Trimer
2018
Novel ANRORC rearrangements of 1,2,4-oxadiazoles
2010
Tuning size and thermal hysteresis in bistable spin crossover nanoparticles.
2010
Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition "moves" towards lower temperatures, reaching a 316 K limit for the cooling down transition and mainta…
CCDC 2005162: Experimental Crystal Structure Determination
2021
Related Article: Argha Saha, Srimanta Guin, Wajid Ali, Trisha Bhattacharya, Sheuli Sasmal, Nupur Goswami, Gaurav Prakash, Soumya Kumar Sinha, Hediyala B. Chandrashekar, S. S. Anjana, Debabrata Maiti|2021|Cell Press: Chem|7|948|doi:10.1016/j.chempr.2021.01.003
CCDC 901545: Experimental Crystal Structure Determination
2014
Related Article: J.Hernandez-Gil,A.Ribes,L.Coga,S.Ferrer,A.Castineiras,M.Liu-Gonzalez,F.Llore,J.C.Mareque-Rivas|2014|Inorg.Chem.|53|578|doi:10.1021/ic4027249
CCDC 726494: Experimental Crystal Structure Determination
2009
Related Article: B.R.D.Nayagam, S.R.Jebas, C.Daisy, D.Schollmeyer|2009|Acta Crystallogr.,Sect.E:Struct.Rep.Online|65|o918|doi:10.1107/S1600536809010782
CCDC 245638: Experimental Crystal Structure Determination
2004
Related Article: A.Pace, I.Pibiri, S.Buscemi, N.Vivona, L.Malpezzi|2004|J.Org.Chem.|69|4108|doi:10.1021/jo049814e
CCDC 1522079: Experimental Crystal Structure Determination
2017
Related Article: Mikk Kaasik, Sandra Kaabel, Kadri Kriis, Ivar Järving, Riina Aav, Kari Rissanen, Tönis Kanger|2017|Chem.-Eur.J.|23|7337|doi:10.1002/chem.201700618
CCDC 613211: Experimental Crystal Structure Determination
2008
Related Article: E.Masiukiewicz, B.Rzeszotarska, I.Wawrzycka-Gorczyca, E.Kolodziejczyk|2007|Synth.Commun.|37|1917|doi:10.1080/00397910701341423