Search results for "Trox"

showing 10 items of 67 documents

Controlled radical polymerization of alkyl acrylates and styrene using a half-sandwich molybdenum(III) complex containing diazadiene ligands

2003

Abstract The half-sandwich molybdenum(III) complex CpMoCl 2 ( i Pr 2 -dad) ( i Pr 2 -dad= i Pr–NCH–CHN– i Pr) proved to be an effective metal catalyst for the controlled radical polymerization of methyl acrylate, butyl acrylate, and styrene. In conjunction with an alkyl iodide [R–I: CH 3 CH(COOEt)I] as an initiator and in the presence or absence of Al(O– i -Pr) 3 as a co-catalyst, the molybdenum-based system gave polymers with narrow molecular weight distributions. The in situ addition of styrene to a macroinitiator of poly(methylacrylate) afforded an AB-type block copolymer.

Nitroxide mediated radical polymerizationPolymers and PlasticsBlock copolymerButyl acrylateRadical polymerizationGeneral Physics and Astronomy010402 general chemistry01 natural sciencesStyrenechemistry.chemical_compoundPolyacrylatePolymer chemistryMaterials ChemistryCopolymer[CHIM.COOR]Chemical Sciences/Coordination chemistryMethyl acrylatePolystyreneAtom transfer radical polymerizationMolybdenum010405 organic chemistryAtom-transfer radical-polymerizationOrganic ChemistrySolution polymerization[CHIM.CATA]Chemical Sciences/Catalysis0104 chemical sciences[CHIM.POLY]Chemical Sciences/PolymerschemistryEuropean Polymer Journal
researchProduct

Waste-free electrochemical oxidation of alchools in water

2006

We describe a new sol-gel molecular electrode made of a thin layer of organosilica doped with the nitroxyl radical TEMPO (2,2,6,6-tetrame-thylpiperidine-1-oxyl) electrodeposited on the surface of an ITO-coated glass and its employment as a selective and versatile oxidation catalyst in the electrochemical conversion of different alcohols to carbonyl compounds. Environmentally friendly water or a water/acetonitrile mixture buffered with bicarbonate is used as solvent. The electrode is highly stable and it can be reused for a prolonged period of time allowing easy separation from the products.

Green chemistryChemistryalcoholgreen chemistryoxidationInorganic chemistryNitroxylGeneral ChemistryElectrochemistrycarbonyl compoundSolventchemistry.chemical_compoundCatalytic oxidationelectrochemistryAlcohol oxidationElectrodeAcetonitrileTEMPO
researchProduct

Nitronyl Nitroxide Radicals Linked to Exchange‐Coupled Metal Dimers – Studies Using X‐ray Crystallography, Magnetic Susceptibility Measurements, EPR …

2009

To study long-range magnetic interactions between exchange-coupled metal centers and a radical moiety coordinated through a peripheral group, three new homodimetallic complexes with MnII, CoII, and ZnII bridged by a nitronyl nitroxide (NIT) substituted benzoate ligand with the structure [(NIT-C6H4-COO)M2(LR)](ClO4)2 {M = MnII, CoII, and ZnII; NIT = nitronyl nitroxide and LR = N,N,N′,N′-tetrakis(2-benzimidazolylalkyl)-2-hydroxy-1,3-diaminopropane} have been prepared and studied by X-ray crystallography, magnetic susceptibility measurements, EPR spectroscopy, and density functional theory calculations. For comparison, related complexes with MnII and CoII bridged by a diamagnetic nitrobenzoate…

Nitroxide mediated radical polymerizationCoordination sphereChemistryLigandBridging ligandMagnetic susceptibilitylaw.inventionInorganic ChemistryCrystallographyComputational chemistrylawAntiferromagnetismDensity functional theoryElectron paramagnetic resonanceEuropean Journal of Inorganic Chemistry
researchProduct

Magnetic Exchange Interaction in Nitronyl Nitroxide Radical-Based Single Crystals of 3d Metal Complexes: A Combined Experimental and Theoretical Study

2018

Two stable nitronyl nitroxide free radicals {R1 = 4′-methoxy-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (NNPhOMe) and R2 = 2-(2′-thienyl)-4,4,5,5-tetramethylimidazoline 3-oxide 1-oxyl (NNT)} are successfully synthesized using Ullmann condensation. The reactions of these two radicals with 3d transition metal ions, in the form of M(hfac)2 (where M = Co or Mn, hfac: hexafluoroacetylacetone), result in four metal–organic complexes Co(hfac)2(NNPhOMe)2, 1; Co(hfac)2(NNT)2·(H2O), 2; Mn(hfac)2(NNPhOMe)·x(C7H16), 3; and Mn(hfac)2(NNT)2, 4. The crystal structure and magnetic properties of these complexes are investigated by single-crystal X-ray diffraction, dc magnetization, infrared, and …

Nitroxide mediated radical polymerizationMaterials science010405 organic chemistryGeneral Chemical EngineeringRadicalGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesNitroxide radicalArticle0104 chemical sciencesMagnetic exchangeMetallcsh:Chemistrylcsh:QD1-999visual_artvisual_art.visual_art_mediumACS Omega
researchProduct

Cyclodextrins in Polymer Synthesis:  Free-Radical Polymerization of Methylated β-Cyclodextrin Complexes of Methyl Methacrylate and Styrene Controlled…

2000

Nitroxide mediated radical polymerizationPolymers and PlasticsChemistryOrganic ChemistryRadical polymerizationChain transferInorganic ChemistryEnd-groupLiving free-radical polymerizationPolymerizationPolymer chemistryMaterials ChemistryLiving polymerizationReversible addition−fragmentation chain-transfer polymerizationMacromolecules
researchProduct

Organic Polyradicals as Redox Mediators: Effect of Intramolecular Radical Interactions on Their Efficiency

2020

The spin–spin interactions between unpaired electrons in organic (poly)radicals, especially nitroxides, are largely investigated and are of crucial importance for their applications in areas such as organic magnetism, molecular charge transfer, or multiple spin labeling in structural biology. Recently, 2,2,6,6-tetramethylpiperidinyloxyl and polymers functionalized with nitroxides have been described as successful redox mediators in several electrochemical applications; however, the study of spin–spin interaction effect in such an area is absent. This communication reports the preparation of a novel family of discrete polynitroxide molecules, with the same number of radical units but differe…

Materials scienceRedox mediatorsRadical02 engineering and technology010402 general chemistryPhotochemistryElectrochemistry01 natural sciencesRedoxlaw.inventiontitanatraneslawTitanatranesnitroxidesspin−spin interactionsMoleculeSettore CHIM/01 - Chimica AnaliticaGeneral Materials SciencepolymeeritElectron paramagnetic resonanceElectrochemical potentialSpin−spin interactionsNitroxides; Redox mediators; Spin−spin interactions; TEMPO; Titanatranes; μ-oxo complexesNitroxidesSettore CHIM/06 - Chimica Organicapolymeerikemia021001 nanoscience & nanotechnologysähkökemia0104 chemical sciencesredox mediatorsμ-oxo complexesUnpaired electronIntramolecular forceorgaaninen kemiaspin-spin interactionsCondensed Matter::Strongly Correlated Electrons0210 nano-technologyTEMPOResearch ArticleACS Applied Materials & Interfaces
researchProduct

Structural insight on organosilica electrodes for waste-free alcohol oxidations

2007

Organic modification of sol-gel catalytic glassy electrodes made of a thin layer of organosilica doped with nitroxyl radical TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) crucially enhances stability in the waste-free oxidation of alcohols to carbonyls in water. Structural comparison between analogous films made of organosilica and unmodified SiO2 shows that the origin of the pronounced stable activity of the ORMOSIL film lies in high hydrophobic and also in the pronounced low degree of hydrophilicity.

Green chemistryoxidationalcoholgreen chemistryInorganic chemistryAlcoholNitroxylGeneral ChemistryPhotochemistryHeterogeneous catalysisOrmosilCatalysisCatalysischemistry.chemical_compoundchemistryAlcohol oxidationsol-gelanodicTEMPOSol-gel
researchProduct

Star-Like Polymers of tert -Butyl Acrylate via Controlled Radical Polymerization - Synthesis and Properties

2011

Summary: Star polymers with different numbers and lengths of poly(tert-butyl acrylate) arms were obtained by the core-first method via atom transfer and iodine mediated radical polymerization. Multifunctional initiators with different numbers of initiating groups (from 3 to 28) were used to initiate the polymerization of tert-butyl acrylate, yielding stars with different numbers of arms. The structures of the stars were characterized by NMR and gel permeation chromatography with refractive index, multiangle laser light scattering and viscosimetric detectors.

Nitroxide mediated radical polymerizationMaterials sciencePolymers and PlasticsOrganic ChemistryRadical polymerizationChain transferCondensed Matter PhysicsPhotochemistryLiving free-radical polymerizationPolymerizationPolymer chemistryMaterials ChemistryCoordination polymerizationReversible addition−fragmentation chain-transfer polymerizationIonic polymerizationMacromolecular Symposia
researchProduct

[Cr(dpa)(ox)2]–: a new bis-oxalato building block for the design of heteropolymetallic systems. Crystal structures and magnetic properties of PPh4[Cr…

2001

[EN] The new complexes of formulae PPh4[Cr(dpa)(ox)(2)] (1), AsPh4[Cr(dpa)(OX)(2)] (2), Hdpa[Cr(dpa)(ox)(2)]-4H(2)O (3), Rad[Cr(dpa)(ox)(2)] . H2O (4) and Sr[Cr(dpa)(ox)(2)](2) . 8H(2)O (5) [PPh4 = tetraphenylphosphonium cation; AsPh4 = tetraphenylarsoniurn cation; dpa = 2,T-dipyridylamine; ox = oxalate dianion; Rad = 2-(4-N-methylpyridinium)4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-a-oxyl-3-N-oxide] have been prepared and characterised by single-crystal X-ray diffraction. The structures of 1-4 consist of discrete [Cr(dpa)(ox)(2)](-) anions, tetraphenylphosphonium. (1), tetraphenylarsonium (2), monoprotonated Hdpa (3) and univalent radical (4) cations and uncoordinated water molecules (2-…

Metal ions in aqueous solutionInorganic chemistryLinear trichromium complexeschemistry.chemical_elementNitronyl nitroxide radicalsCrystal structureChlorideCatalysisOxalateElectronic-Propertieschemistry.chemical_compoundChromiumMaterials ChemistryMoleculeCr contactsMonohydrateMolecular-StructureChemistryLigandGeneral ChemistryAtoms LiCrystallographyGaussian-Basis setsOctahedronFISICA APLICADACopper(II) complexesChirality (chemistry)New Journal of Chemistry
researchProduct

Grafting of Hindered Phenol Groups onto Ethylene/α-Olefin Copolymer by Nitroxide Radical Coupling

2017

The covalent immobilization of hindered phenol groups, with potential antioxidant activity, onto an ethylene/α-olefin (EOC) copolymer was carried out by the nitroxide radical coupling (NRC) reaction performed in the melt with a peroxide and the 3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (BHB-T). Functionalized EOC (EOC-g-(BHB-T)) was exposed to photo- and thermo-oxidation. By comparison with some model compounds bearing the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) moiety or the hindered phenol unit, it was observed that the grafted BHB-T could effectively help the stabilization of the polymer matrix both under photo- and thermo-oxidation. In addit…

EthylenePolymers and Plastics02 engineering and technology010402 general chemistry01 natural sciencesPeroxideArticlelcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistrynitroxide radical couplingPolymer chemistryCopolymerMoietyantioxidant covalent immobilizationchemistry.chemical_classificationOlefin fiberhindered phenol moietyChemistry (all)General ChemistryPolymer021001 nanoscience & nanotechnologyGrafting0104 chemical scienceschemistryCovalent bondantioxidant covalent immobilization; nitroxide radical coupling; hindered phenol moiety; HAS-NOR antioxidant0210 nano-technologyHAS-NOR antioxidantPolymers
researchProduct