Search results for "Tunnelling"
showing 10 items of 218 documents
Transitions between metastable states in silica clusters
1999
Relaxation phenomena in glasses can be related to jump processes between different minima of the potential energy in the configuration space. These transitions play a key role in the low temperature regime, giving rise to tunneling systems responsible for the anomalous specific heat and thermal conductivity in disordered solids with respect to crystals. By using a recently developed numerical algorithm, we study the potential energy landscape of silica clusters, taking as a starting point the location of first order saddle points. This allows us to find a great number of adjacent minima. We analyze the degree of cooperativity of these transitions and the connection of physical properties wi…
Inelastic neutron scattering study of the rotational excitations in(KBr)1−x(KCN)xin the paraelastic and structural glass state
1984
The coupled rotational-translational excitations in ${(\mathrm{KBr})}_{1\ensuremath{-}x}{(\mathrm{KCN})}_{x}$ were studied by inelastic neutron scattering for concentrations $0.008\ensuremath{\le}x\ensuremath{\le}0.20$. We followed the ${A}_{1g}\ensuremath{-}{T}_{2g}$ tunneling transition and the ${A}_{1g}\ensuremath{-}{E}_{g}$ librational excitation through the transition from the paraelastic to the structural glass state. We found that these two excitations and their coupling to the lattice strains exhibit a very different temperature dependence in the glass state. While the tunneling transition, which triggers reorientations of the ${\mathrm{CN}}^{\ensuremath{-}}$ ions, shows a drastic r…
Spin lattice relaxation rates of tunnelling CD3 groups
1991
The spin lattice relaxation rates of deuterated methyl groups are calculated for threefold and sixfold potentials. It is shown that it should be possible to determine the symmetry of the potential hindering the methyl groups from deuteron spin lattice relaxation experiments. The temperature dependence of the spin lattice relaxation rates is discussed using a simple model. The similarities and the differences between proton NMR and deuteron NMR are pointed out. The main difference is thatEa↔Eb transitions are forbidden by spin selection rules in case of CH3, but not for CD3. Therefore, and due to the fact that the quadrupolar interaction is a single particle interaction, deuteron NMR allows …
The Impact of a Finite Waveguide Work Function on Resonant Tunneling
2021
To describe electron transport in a waveguide, we assume that the electron wave functions vanish at the waveguide boundary. This means that, being in the waveguide, an electron can not cross the waveguide boundary because of the infinite potential barrier. In reality, the assumption has never been fulfilled: generally, electrons can penetrate through the waveguide boundary and go some distance away from the waveguide. Therefore, we have to clarify how this phenomenon affects the resonant tunneling.
Manipulation of the spin in single molecule magnets via Landau-Zener transitions
2011
We theoretically investigate the effects of a magnetic pulse on a single-molecule magnet (SMM) initially magnetized by a dc field along the easy axis of magnetization. In the Landau\char21{}Zener (LZ) scheme, it is shown that the final spin state is a function of the shape and duration of the pulse, conditioned by the decoherence time of the SMM. In the case of coherent tunneling, the asymmetric pulses are shown to reverse the direction of the magnetization, while the symmetric pulses can only decrease the value of the initial magnetization. It is also demonstrated that the application of an external variable dc field in the hard plane of magnetization provides the possibility to tune the r…
Spin-lattice relaxation via quantum tunneling in anEr3+-polyoxometalate molecular magnet
2010
We investigate the mechanism of spin-lattice relaxation of Er ions encapsulated in polyoxometalate clusters, which below 4 K can only reverse its spin via quantum tunneling processes. The temperature-independent rate −1 is, at zero field, ten orders of magnitude larger than the rates predicted for direct phonon-induced processes. In addition, we observe that −1 is suppressed by external magnetic bias and hyperfine interactions but enhanced by increasing the concentration of Er ions. The observed relaxation agrees with predictions for pure quantum tunneling, showing that this phenomenon drives the thermalization of electronic spins. A possible link between these two phenomena is discussed, i…
Electronic correlation effects and the Coulomb gap at finite temperature.
2000
We have investigated the effect of the long-range Coulomb interaction on the one-particle excitation spectrum of n-type Germanium, using tunneling spectroscopy on mechanically controllable break junctions. The tunnel conductance was measured as a function of energy and temperature. At low temperatures, the spectra reveal a minimum at zero bias voltage due to the Coulomb gap. In the temperature range above 1 K the Coulomb gap is filled by thermal excitations. This behavior is reflected in the temperature dependence of the variable-range hopping resitivity measured on the same samples: Up to a few degrees Kelvin the Efros-Shkovskii ln$R \propto T^{-1/2}$ law is obeyed, whereas at higher tempe…
Landau-Zener-Stueckelberg effect in a model of interacting tunneling systems
2003
The Landau-Zener-Stueckelberg (LZS) effect in a model system of interacting tunneling particles is studied numerically and analytically. Each of N tunneling particles interacts with each of the others with the same coupling J. This problem maps onto that of the LZS effect for a large spin S=N/2. The mean-field limit N=>\infty corresponds to the classical limit S=>\infty for the effective spin. It is shown that the ferromagnetic coupling J>0 tends to suppress the LZS transitions. For N=>\infty there is a critical value of J above which the staying probability P does not go to zero in the slow sweep limit, unlike the standard LZS effect. In the same limit for J>0 LZS transition…
Spin transfer torques and spin-dependent transport in a metallic F/AF/N tunneling junction
2018
We study spin-dependent electron transport through a ferromagnetic-antiferromagnetic-normal metal tunneling junction subject to a voltage or temperature bias, in the absence of spin-orbit coupling. We derive microscopic formulas for various types of spin torque acting on the antiferromagnet as well as for charge and spin currents flowing through the junction. The obtained results are applicable in the limit of slow magnetization dynamics. We identify a parameter regime in which an unconventional damping-like torque can become comparable in magnitude to the equivalent of the conventional Slonczewski's torque generalized to antiferromagnets. Moreover, we show that the antiferromagnetic sublat…
Microwave induced co-tunneling in single electron tunneling transistors
2002
Abstract The influence of microwaves on the co-tunneling in single electron tunneling transistors has been investigated as function of frequency and power in the temperature range from 150 to 500 mK. All 20 low frequency connections and the RF line were filtered, and the whole cryostat was suspended on rubber bellows. Cross-talk was minimized by using individual coaxial lines between the sample and the room temperature electronics. The co-tunneling experiments were performed at zero DC bias current by measuring the voltage response to a very small amplitude 2 Hz current modulation with the gate voltage fixed at maximum Coulomb blockade. With the microwave signal applied to one side of the t…