Search results for "Two-phase"
showing 10 items of 98 documents
Hydrodynamics of a three-phase fixed-bed reactor operating in the pulsing flow regime at an elevated pressure
2002
Abstract Results are presented for a three-phase reactor operating at an elevated pressure in the pulsing flow regime. For the system air–water and pressures of 0.1– 0.9 MPa lines are determined that define the change of the hydrodynamic model from the gas continuous flow regime (GCF) to the pulsing flow regime (PF). Also, parameters are found that characterize the pulsing flow of fluids, namely the velocity of pulses travelling along the bed, the frequency of pulsations and their structure, i.e., the length of the pulses and that of the liquid-rich zone.
Hydrodynamics of two-phase flow in tubular reactor
2017
Macroscopic two-phase flow in porous media
2000
A system of macroscopic equations for two-phase immiscible displacement in porous media is presented. The equations are based on continuum mixture theory. The pairwise character of interfacial energies is explicitly taken into account. The equations incorporate the spatiotemporal variation of interfacial energies and residual saturations. The connection between these equations and relative permeabilities is established, and found to be in qualitative agreement with experiment.
Interactions of zinc octacarboxyphthalocyanine with selected amino acids and with albumin
2015
Effect of selected amino acids (glycine, l-histidine, l-cysteine, l-serine, l-tryptophan) and albumin on the spectroscopic properties and photostability of zinc octacarboxyphthalocyanine (ZnPcOC) was explored in the phosphate buffer at a pH of 7.0. The photodegradation of ZnPcOC alone and in the presence of amino acids or albumin has been investigated in aqueous phase using UV-366 nm and daylight irradiation. Kinetic analysis showed that the interaction with amino acids or albumin enhances the photostability of ZnPcOC. To answer the question of how zinc phthalocyanine interacts with amino acids extensive DFT calculations were performed. Analysis of the optimized geometry features of ZnPcOC:…
Mechanism of nanocapsules formation by the emulsion-diffusion process.
2007
International audience; A detailed investigation into the mechanisms of nanocapsule formation by means of the two stages “emulsion–diffusion” process is reported. Such widely used process is still poorly understood. An emulsion of oil, polymer and ethyl acetate is fabricated as a first step; dilution with pure water allows ethyl acetate to diffuse out from the droplets, leaving a suspension of nanocapsules at the end. It has been shown that the size of nanocapsules was related to the chemical composition of the organic phase and the size of primary emulsion through a simple geometrical relationship. As a consequence, most of the properties of the nanocapsules were decided at the emulsificat…
Investigation of hydrogen and deuterium impact on the release of tritium from two-phase lithium ceramics under reactor irradiation
2022
In the development of fusion energy, an important task is the study and improvement of tritium production technologies. In this case, one of the most promising materials for tritium generation is lithium ceramics. Considering the importance of the task, numerous studies are aimed at solving the problem of determining the parameters and mechanisms of tritium release in lithium-containing materials. This paper presents the results of a study of tritium release processes from two-phase lithium ceramics of Li$_{4}$SiO$_{4}$/Li$_{2}$TiO$_{3}$ during reactor irradiation when hydrogen and deuterium are injected into the chamber with irradiated samples. The mechanisms regularities of the tritium yi…
Analyses of single- and two-phase flow pressure drops in helical pipes using a modified RELAP5 code
2012
Abstract Thermal fluid dynamics analyses on single- and two-phase flows in helical pipes of steam generators to be used in Generation III and IV nuclear reactors have been performed. The study concerned with experimental activities as well code simulations carried out in the framework of a collaboration between the Department of Energetics of the Polytechnic of Torino and the Department of Energy of the University of Palermo. The goal was the validation of models implemented in Relap5/Mod3.2β thermal–hydraulic advanced code to simulate the hydrodynamic behaviour of helical pipe components in spite of the one-dimensional nature of the code. It is shown that much of the experimental data obta…
A semi-empirical approach for predicting two-phase flow discharge through branches of various orientations connected to a horizontal main pipe
2010
Abstract The subdivision of two-phase flow in branching conduits consisting of a large horizontal main pipe with upward, downward, or lateral branches of reduced diameter is of great interest in various technological fields. For example, these conduits are important in light-water nuclear reactors (LWRs) in the case of a small break loss-of-coolant accident (SBLOCA) in a leg of the reactor's primary coolant loops, as well as for breaks or valve malfunctions in a large pipeline. In these kinds of circumstances, the relevant phenomenology often involves phase stratification coupled with possible liquid entrainment or gas pool-through phenomena. Therefore, these phenomena were studied in depth…
Localization of n-alcohols and structural effects in aqueous solutions of sodium dodecyl sulfate
1997
Small-angle neutron Mattering measurements OD sodium dodecyl sulfate aqueous solutions have been performed in the presence of n-alcohols, from methanol to octanol, at different alcohol concentrations. By modeling the experimental intensities, it was possible to obtain structural information and to derive simultaneously the distribution of the alcohols between the aqueous and the micellar phases. It was found that short chain alcohols tend to remain in the aqueous phase and, by altering the solvent properties, induce a decrease in the aggregation number of sodium dodecyl sulfate micelles. On the other hand, alcohols with longer hydrocarbon chains were found to be present in both phases thoug…
Effect of apolar phase dielectric constant on interfacial properties of β-lactoglobulin (dielectric constant and interfacial properties of β-lactoglo…
2005
International audience; In this work, we hypothesized that the difference in the dielectric constant value existing between two non-miscible phases such as oil and water could be partially responsible for both protein unfolding and reorganization of the protein structure at the interface. So, we replaced the oil phase, whose dielectric constant value is 2, by organic solvents chosen for both their non-miscibility with water and their range of dielectric constant values higher (range 6.1-7.2) than that of oil. Using a dynamic drop tensiometer, we studied both surface activity and viscoelastic properties of the milk protein at various interfaces. The aqueous phase (pH7; 25°C) contained the co…