Search results for "Two-photon"

showing 10 items of 90 documents

Two-Photon Absorption Properties and Structures of BODIPY and Its Dyad, Triad and Tetrad.

2018

A series consisting of a dyad, a triad and a tetrad containing either two, three and four BODIPY units, respectively, has been synthesized and fully characterized and compared to two mono-BODIPY analogs (used as references). The one- and two-photon photophysical properties have been measured and the X-ray structures of four of the BODIPY derivatives have been determined. In the 700-900 nm range, the two-photon absorption (TPA) cross sections range from 30 GM to 160 GM for these compounds.

010405 organic chemistryChemistryTriad (anatomy)General Chemistry010402 general chemistry01 natural sciencesTwo-photon absorption0104 chemical scienceschemistry.chemical_compoundCrystallographymedicine.anatomical_structuremedicineBODIPYAbsorption (chemistry)TetradChemPlusChem
researchProduct

Two-photon absorption of BF2-carrying compounds: insights from theory and experiment

2017

This communication presents a structure–property study of a few novel pyridine-based difluoroborate compounds with a N–BF2–O core, which exhibit outstanding fluorescence properties. To exploit their potential for two-photon bioimaging, relationships between the two-photon action cross section and systematic structural modifications have been investigated and unravelled.

010405 organic chemistrystructure-property studyGeneral Physics and AstronomyNanotechnology010402 general chemistry01 natural sciencesFluorescenceTwo-photon absorption0104 chemical scienceschemistry.chemical_compoundchemistryChemical physicsPyridinecompoundsPhysical and Theoretical Chemistryta116Physical Chemistry Chemical Physics
researchProduct

Shedding Light on the Formation and Structure of Kombucha Biofilm Using Two-Photon Fluorescence Microscopy

2021

Kombucha pellicles are often used as inoculum to produce this beverage and have become a signature feature. This cellulosic biofilm produced by acetic acid bacteria (AAB) involves yeasts, which are also part of the kombucha consortia. The role of microbial interactions in thede novoformation and structure of kombucha pellicles was investigated during the 3 days following inoculation, using two-photon microscopy coupled with fluorescent staining. Aggregated yeast cells appear to serve as scaffolding to which bacterial cellulose accumulates. This initial foundation leads to a layered structure characterized by a top cellulose-rich layer and a biomass-rich sublayer. This sublayer is expected t…

0106 biological sciencesMicrobiology (medical)Kombuchatwo-photon fluorescence microscopyinteraction01 natural sciencesMicrobiologybiofilm03 medical and health scienceschemistry.chemical_compound[SPI]Engineering Sciences [physics]010608 biotechnologyMicroscopyCelluloseAcetic acid bacteria030304 developmental biologyOriginal Research0303 health sciencesbiologyBiofilmbiology.organism_classificationTwo photon fluorescenceYeastQR1-502cellulosechemistryBacterial celluloseBiophysicskombucha[SDV.AEN]Life Sciences [q-bio]/Food and NutritionFrontiers in Microbiology
researchProduct

A continued fraction based approach for the Two-photon Quantum Rabi Model

2019

We study the Two Photon Quantum Rabi Model by way of its spectral functions and survival probabilities. This approach allows numerical precision with large truncation numbers, and thus exploration of the spectral collapse. We provide independent checks and calibration of the numerical results by studying an exactly solvable case and comparing the essential qualitative structure of the spectral functions. We stress that the large time limit of the survival probability provides us with an indicator of spectral collapse, and propose a technique for the detection of this signal in the current and upcoming quantum simulations of the model. E.L. acknowledges fruitful discussions with D. Braak. I.…

0301 basic medicineCurrent (mathematics)Two-photon Quantum Rabi modelCalibration (statistics)TruncationStructure (category theory)Collapse (topology)FOS: Physical scienceslcsh:MedicineelectrodynamicsContinued fractionSignalArticleSettore FIS/03 - Fisica Della Materia03 medical and health sciences0302 clinical medicineFraction (mathematics)Statistical physicslcsh:ScienceQuantumPhysicsQuantum PhysicsMultidisciplinaryatomlcsh:RspaceSpectral function030104 developmental biologylcsh:QQuantum Physics (quant-ph)030217 neurology & neurosurgery
researchProduct

4D (x-y-z-t) imaging of thick biological samples by means of Two-Photon inverted Selective Plane Illumination Microscopy (2PE-iSPIM)

2015

AbstractIn the last decade light sheet fluorescence microscopy techniques, such as selective plane illumination microscopy (SPIM), has become a well established method for developmental biology. However, conventional SPIM architectures hardly permit imaging of certain tissues since the common sample mounting procedure, based on gel embedding, could interfere with the sample morphology. In this work we propose an inverted selective plane microscopy system (iSPIM), based on non-linear excitation, suitable for 3D tissue imaging. First, the iSPIM architecture provides flexibility on the sample mounting, getting rid of the gel-based mounting typical of conventional SPIM, permitting 3D imaging of…

0301 basic medicineMultidisciplinaryMaterials sciencePhotonImage qualitybusiness.industryScatteringBright-field microscopy01 natural sciencesArticle010309 optics03 medical and health sciences030104 developmental biologyOpticsTwo-photon excitation microscopyLight sheet fluorescence microscopy0103 physical sciencesMicroscopybusinessSelective Plane Illumination MicroscopyExcitation
researchProduct

A Novel Cervical Spinal Cord Window Preparation Allows for Two-Photon Imaging of T-Cell Interactions with the Cervical Spinal Cord Microvasculature d…

2017

T-cell migration across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple scle rosis (MS). Two-photon intravital microscopy (2P-IVM) has been established as a powerful tool to study cell-cell interactions in inflammatory EAE lesions in living animals. In EAE, central nervous system inflammation is strongly pronounced in the spinal cord, an organ in which 2P-IVM imaging is technically very challenging and has been limited to the lumbar spinal cord. Here, we describe a novel spinal cord window preparation allowing to use 2P-IVM to image immune cell interactions with the cervical spinal cord micro…

0301 basic medicinePathologymedicine.medical_specialtyImmunologyCentral nervous systemexperimental autoimmune encephalomyelitis610 Medicine & healthblood–brain barrierBlood–brain barrier03 medical and health sciences0302 clinical medicineMethodsmedicineImmunology and Allergy610 Medicine & healthtwo-photon intravital microscopybusiness.industrycervical spinal cord windowMultiple sclerosisExperimental autoimmune encephalomyelitis500 Sciencemedicine.diseaseSpinal cordExtravasationLumbar Spinal Cord030104 developmental biologymedicine.anatomical_structurebusinessT-cell migration030217 neurology & neurosurgeryIntravital microscopyFrontiers in Immunology
researchProduct

Area‐Selective Atomic Layer Deposition on Functionalized Graphene Prepared by Reversible Laser Oxidation

2022

Publisher Copyright: © 2022 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH. Area-selective atomic layer deposition (ALD) is a promising “bottom-up” alternative to current nanopatterning techniques. While it has been successfully implemented in traditional microelectronic processes, selective nucleation of ALD on 2D materials has so far remained an unsolved challenge. In this article, a precise control of the selective deposition of ZnO on graphene at low temperatures (<250 °C) is demonstrated. Maskless femtosecond laser writing is used to locally activate predefined surface areas (down to 300 nm) by functionalizing graphene to achieve excellent ALD selectivity (up to…

Area-selective atomic layer depositionnanorakenteetMechanics of Materialstwo-photon oxidationMechanical Engineeringatomic layer depositiongraphenesurface engineeringgrafeeninanotekniikkaatomikerroskasvatusnanopatterningAdvanced Materials Interfaces
researchProduct

New Measurements of the Beam Normal Spin Asymmetries at Large Backward Angles with Hydrogen and Deuterium Targets

2017

International audience; New measurements of the beam normal single spin asymmetry in the electron elastic and quasielastic scattering on the proton and deuteron, respectively, at large backward angles and at ⟨Q2⟩=0.22  (GeV/c)2 and ⟨Q2⟩=0.35  ( GeV/c)2 are reported. The experimentally observed asymmetries are compared with the theoretical calculation of Pasquini and Vanderhaeghen [Phys. Rev. C 70, 045206 (2004).PRVCAN0556-281310.1103/PhysRevC.70.045206]. The agreement of the measurements with the theoretical calculations shows a dominance of the inelastic intermediate excited states of the nucleon, πN and the Δ resonance. The measurements explore a new, important parameter region of the exc…

Born approximationelectronProtonGeneral Physics and AstronomyElectronelectron nucleonInelastic scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesResonance (particle physics)Nuclear physicsstatistical analysis0103 physical sciencesexcited stateBorn approximation010306 general physicsNuclear ExperimentSpin-½hydrogen: targetPhysicsQuasielastic scatteringexchange: two-photon010308 nuclear & particles physicsnucleoninelastic scatteringangular dependenceresonanceHigh Energy Physics::Experimentdeuteron: targetAtomic physicsNucleonspin: asymmetryexperimental resultsphoton: virtual
researchProduct

Enhanced network activity despite clinical recovery in experimental neuroinflammation using two-photon calcium imaging

2014

Calcium imagingNeurologyTwo-photon excitation microscopyChemistryImmunologyImmunology and AllergyNeurology (clinical)NeuroscienceNetwork activityNeuroinflammationJournal of Neuroimmunology
researchProduct

Self-trapped exciton luminescence in crystalline α-quartz under two-photon laser excitation

2003

Abstract The luminescence of pure crystalline α-quartz is studied under pulsed ArF laser excitation. The luminescence parameters obtained correspond well with those of self-trapped excitons (STEs) in α-quartz, indicating that the excitation process is two-photon. The efficiency of two-photon excitation is of the same order of magnitude as the one-photon excitation of sodium salicylate. The STE luminescence decay kinetics and their temperature dependence under photoexcitation were recorded with higher accuracy than previously. Changes in the decay kinetics with temperature are explained by the splitting of the STE triplet state in zero magnetic field and are analyzed with the assumption of t…

ChemistryExcitonRelaxation (NMR)Spin–lattice relaxationPhysics::OpticsGeneral ChemistryCondensed Matter PhysicsPhotoexcitationCondensed Matter::Materials ScienceTwo-photon excitation microscopyPhysics::Atomic and Molecular ClustersMaterials ChemistryTriplet stateAtomic physicsLuminescenceExcitationSolid State Communications
researchProduct