Search results for "U-Net"
showing 5 items of 5 documents
Evaluation of Deep Neural Networks for Semantic Segmentation of Prostate in T2W MRI
2020
In this paper, we present an evaluation of four encoder&ndash
PSPU-Net for Automatic Short Axis Cine MRI Segmentation of Left and Right Ventricles
2020
[EN] Characterization of the heart anatomy and function is mostly done with magnetic resonance image cine series. To achieve a correct characterization, the volume of the right and left ventricle need to be segmented, which is a timeconsuming task. We propose a new convolutional neural network architecture that combines U-net with PSP modules (PSPU-net) for the segmentation of left and right ventricle cavities and left ventricle myocardium in the diastolic frame of short-axis cine MRI images and compare its results against a classic 3D U-net architecture. We used a dataset containing 399 cases in total. The results showed higher quality results in both segmentation and final volume estimati…
Deep Learning Architectures for Diagnosis of Diabetic Retinopathy
2023
For many years, convolutional neural networks dominated the field of computer vision, not least in the medical field, where problems such as image segmentation were addressed by such networks as the U-Net. The arrival of self-attention-based networks to the field of computer vision through ViTs seems to have changed the trend of using standard convolutions. Throughout this work, we apply different architectures such as U-Net, ViTs and ConvMixer, to compare their performance on a medical semantic segmentation problem. All the models have been trained from scratch on the DRIVE dataset and evaluated on their private counterparts to assess which of the models performed better in the segmentatio…
DL_Track : Automated analysis of muscle architecture from B-mode ultrasonography images using deep learning
2023
B-mode ultrasound is commonly used to image musculoskeletal tissues, but one major bottleneck is data analysis. Manual analysis is commonly deployed for assessment of muscle thickness, pennation angle and fascicle length in muscle ultrasonography images. However, manual analysis is somewhat subjective, laborious and requires thorough experience. We provide an openly available algorithm (DL_Track) to automatically analyze muscle architectural parameters in ultrasonography images or videos of human lower limb muscles.
 We trained two different neural networks (classic U-net [Ronneberger et al., 2021] and U-net with VGG16 [Simonyan & Zisserman, 2015] pretrained encoder) one to detect …
Multi-Path U-Net Architecture for Cell and Colony-Forming Unit Image Segmentation
2022
U-Net is the most cited and widely-used deep learning model for biomedical image segmentation. In this paper, we propose a new enhanced version of a ubiquitous U-Net architecture, which improves upon the original one in terms of generalization capabilities, while addressing several immanent shortcomings, such as constrained resolution and non-resilient receptive fields of the main pathway. Our novel multi-path architecture introduces a notion of an individual receptive field pathway, which is merged with other pathways at the bottom-most layer by concatenation and subsequent application of Layer Normalization and Spatial Dropout, which can improve generalization performance for small datase…