Search results for "UGT1A10"

showing 1 items of 1 documents

Molecular docking-based design and development of a highly selective probe substrate for UDP-glucuronosyltransferase 1A10

2018

Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function. To this end, homology models were constructed and used to design new substrates, and subsequently, six novel C3-substituted (4-fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-(dimethylamino)phenyl, 4-methylphenyl, or triazole) 7-hydroxycoumarin derivatives were synthesized from inexpensive starting materials. All tested compounds could be glucuronidated to nonfluorescen…

0301 basic medicineMutantGlucuronidationPharmaceutical ScienceUGT1A10030226 pharmacology & pharmacySubstrate Specificity7-hydroxycoumarin derivativechemistry.chemical_compound0302 clinical medicineDrug DiscoveryCRYSTAL-STRUCTUREGlucuronosyltransferaseta116ta317AFFINITYchemistry.chemical_classificationChemistry3. Good healthMolecular ImagingMolecular Docking Simulation7-hydroxycoumarin317 Pharmacyin silicoMolecular MedicinefluorescenceUDP-glucuronosyltransferaseEXPRESSIONENZYMEStereochemistryIn silicoKineticsFLUORESCENT-PROBETriazoleta311103 medical and health sciencesGlucuronidesMicrosomesXENOBIOTICSHumansUmbelliferonesFluorescent DyesGLUCURONIDATIONta1182glucuronidationfluoresenssiSubstrate (chemistry)drug metabolism030104 developmental biologyEnzymeDRUG-METABOLISMDrug DesignMolecular ProbesMutationMutagenesis Site-DirectedORAL BIOAVAILABILITYDrug metabolism
researchProduct