Search results for "ULTRA"
showing 10 items of 4451 documents
Work fluctuations in bosonic Josephson junctions
2016
We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that…
Energy transfer in LH2 of Rhodospirillum Molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations.
2001
Two color transient absorption measurements were performed on a LH2 complex from Rhodospirillum molischianum by using several excitation wavelengths (790, 800, 810, and 830 nm) and probing in the spectral region from 790 to 870 nm at room temperature. The observed energy transfer time of ∼1.0 ps from B800 to B850 at room temperature is longer than the corresponding rates in Rhodopseudomonas acidophila and Rhodobacter sphaeroides. We observed variations (0.9-1.2 ps) of B800-850 energy transfer times at different B800 excitation wavelengths, the fastest time (0.9 ps) was obtained with 800 nm excitation. At 830 nm excitation the energy transfer to the B850 ring takes place within 0.5 ps. The m…
Injection and ultrafast regeneration in dye-sensitized solar cells
2014
Injection of an electron from the excited dye molecule to the semiconductor is the initial charge separation step in dye-sensitized solar cells (DSC's). Though the dynamics of the forward injection process has been widely studied, the results reported so far are controversial, especially for complete DSC's. In this work, the electron injection in titanium dioxide (TiO2) films sensitized with ruthenium bipyridyl dyes N3 and N719 was studied both in neat solvent and in a typical iodide/triiodide (I-/I3 -) DSC electrolyte. Transient absorption (TA) spectroscopy was used to monitor both the formation of the oxidized dye and the arrival of injected electrons to the conduction band of TiO2. Emiss…
Controlled turbulence regime of electron cyclotron resonance ion source for improved multicharged ion performance
2020
Fundamental studies of excitation and non-linear evolution of kinetic instabilities of strongly nonequlibrium hot plasmas confined in open magnetic traps suggest new opportunities for fine-tuning of conventional electron cyclotron resonance (ECR) ion sources. These devices are widely used for the production of particle beams of high charge state ions. Operating the ion source in controlled turbulence regime allows increasing the absorbed power density and therefore the volumetric plasma energy content in the dense part of the discharge surrounded by the ECR surface, which leads to enhanced beam currents of high charge state ions. We report experiments at the ECR ion source at the JYFL accel…
Effect of space charge on the negative oxygen flux during reactive sputtering
2017
Negative ions often play a distinctive role in the phase formation during reactive sputter deposition. The path of these high energetic ions is often assumed to be straight. In this paper, it is shown that in the context of reactive magnetron sputtering space charge effects are decisive for the energetic negative ion trajectories. To investigate the effect of space charge spreading, reactive magnetron sputter experiments were performed in compound mode with target materials that are expected to have a high secondary ion emission yield (MgO and CeO2). By the combination of energy flux measurements, and simulations, a quantitative value for the negative oxygen ion yield can be derived.
Determination of an empirical law of aluminium and magnesium alloys absorption coefficient during Nd :YAG laser interaction
2007
International audience; Welding laser modelling requires knowledge about relative changes of many thermo-physical parameters involved in the interaction. The absorptivity of the material is one of the most important. In this study, experimental measurements of absorptivity with an integrating sphere on two alloys (aluminium and magnesium) were made. These results were compared with an analytical calculation that takes into account the trapping of the beam by multiple reflections inside the keyhole. Based on a statistical method, an empirical law is proposed connecting absorptivity with the peak power of the laser and the duration of interaction. During the interaction, two distinct phenomen…
Generalised bisection method for optimum ultrasonic ray tracing and focusing in multi-layered structures
2021
Ultrasonic testing has been used for many decades, proving itself very efficient for detecting defects in many industrial sectors. The desire to apply ultrasonic testing to geometrically complex structures, and to anisotropic, inhomogeneous materials, together with the advent of more powerful electronics and software, is constantly pushing the applicability of ultrasonic waves to their limits. General ray tracing models, suitable for calculating the proper incident angle of single element probes and the proper time delay of phased array, are currently required. They can support the development of new imaging techniques, as Full Matrix Capture and Total Focusing Method, and the execution of …
Measurements on partial discharge in on‐site operating power transformer: a case study
2018
This study presents the case study of a substation in-service power transformer referred to the on-site partial discharge (PD) detection and evaluation methods. An original methodology for simultaneous application of three methods is proposed: electrical, acoustic and ultra-high frequency. Transformer is powered by the power grid and no external generator is required according to the proposed methodology. Furthermore, several possibilities of applying these concurrent measurements and benefits of such solution in terms of result interpretation, interference resistance and on-site measurement applicability are indicated. The proposed methodology allows for a fast, accurate and secure PD diag…
Modelling of expected B, C, N and O Lyman-α line intensities emitted from W7-X plasmas and measured by means of the W7-X light impurity monitor system
2021
AbstractThe “C/O Monitor” for Wendelstein 7-X (W7-X) is a dedicated light impurity XUV spectrometer intended to measure Lyman-α transitions of hydrogen-like ions of four low-Z impurities—boron (4.9 nm), carbon (3.4 nm), nitrogen (2.5 nm) and oxygen (1.9 nm). Since the discussed diagnostic will deliver continuous information about the line intensities, it is crucial to understand the origin of the obtained signals with respect to the experimental plasma conditions (electron temperature and density). This, however, might be difficult because of the broad acceptance angle of the spectrometer and irregular shape of the plasma edge or SOL where the radiation is expected to mostly come from, depe…
High-frequency electrodeless lamps in argon–mercury mixtures
2005
In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon–mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths λ = 404.66, 435.83, 546.07 nm (7 3S1–6 3P0,1,2) and the resonance line λ = 253.7 nm (6 3 P1–6 1S0) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line…