Search results for "Ultrasonics"

showing 10 items of 326 documents

Current status of AlInN layers lattice-matched to GaN for photonics and electronics

2007

We report on the current properties of Al1-x InxN (x approximate to 0.18) layers lattice- matched ( LM) to GaN and their specific use to realize nearly strain- free structures for photonic and electronic applications. Following a literature survey of the general properties of AlInN layers, structural and optical properties of thin state- of- the- art AlInN layers LM to GaN are described showing that despite improved structural properties these layers are still characterized by a typical background donor concentration of ( 1 - 5) x 10(18) cm(-3) and a large Stokes shift (similar to 800 meV) between luminescence and absorption edge. The use of these AlInN layers LM to GaN is then exemplified …

PhotoluminescenceMaterials scienceAcoustics and UltrasonicsGallium nitrideSettore ING-INF/01 - ElettronicaVertical-cavity surface-emitting laserchemistry.chemical_compoundMOLECULAR-BEAM EPITAXYALGAN/GAN QUANTUM-WELLSIII-VDISTRIBUTED BRAGG REFLECTORSCRYSTALSURFACE-EMITTING LASERSbusiness.industryREFLECTORSHeterojunctionOPTICAL-PROPERTIESCondensed Matter PhysicsAL1-XINXN THIN-FILMSSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDISTRIBUTED BRAGGAbsorption edgechemistryOptoelectronicsVAPOR-PHASE EPITAXYIII-V NITRIDESFIELD-EFFECT TRANSISTORSNITRIDESbusinessLiterature surveyCRYSTAL GALLIUM NITRIDELasing thresholdGALLIUM NITRIDEMolecular beam epitaxyJournal of Physics D: Applied Physics
researchProduct

Enhanced UV emission from ZnO nanoflowers synthesized by the hydrothermal process

2012

ZnO nanoflowers were synthesized by the hydrothermal process at an optimized growth temperature of 200 °C and a growth/reaction time of 3 h. As-prepared ZnO nanoflowers were characterized by x-ray diffraction, scanning electron microscopy, UV–visible and Raman spectroscopy. X-ray diffraction and Raman studies reveal that the as-synthesized flower-like ZnO nanostructures are highly crystalline with a hexagonal wurtzite phase preferentially oriented along the plane. The average length (234–347 nm) and diameter (77–106 nm) of the nanorods constituting the flower-like structure are estimated using scanning electron microscopy studies. The band gap of ZnO nanoflowers is estimated as 3.23 eV, the…

PhotoluminescenceMaterials scienceAcoustics and UltrasonicsScanning electron microscopeBand gapAnalytical chemistryNanotechnologyCondensed Matter PhysicsMicrostructureHydrothermal circulationSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialssymbols.namesakesymbolsNanorodRaman spectroscopyWurtzite crystal structureJournal of Physics D: Applied Physics
researchProduct

Sound absorption prediction of linear damped acoustic resonators using a lightweight hybrid model

2019

International audience; A lightweight numerical method is developed to predict the sound absorption coefficient of resonators whose cross-section dimensions are significantly larger compared to the viscous and thermal boundary layer’s thicknesses. This method is based on the boundary layer theory and on the perturbations theory. According to the perturbations theory, in acoustical domains with large dimensions, the fluid viscosity and thermal conductivity only affect the boundary layers. The model proposed in this article combines the lossless Helmholtz wave equation derived from a perfect fluid hypothesis, with viscosity and thermal conductivity values of a real fluid to compute the sound …

PhysicsAcoustics and UltrasonicsComputation efficiencyNumerical analysisAcousticsResonance absorbersDissipationWave equation01 natural sciences7. Clean energy[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]010305 fluids & plasmasBoundary layer theoryViscothermal lossesBoundary layersymbols.namesakeViscosityNoise reduction coefficientResonatorHelmholtz free energy0103 physical sciencessymbolsSound absorptionAcoustic modeling010301 acousticsApplied Acoustics
researchProduct

Spin caloric effects in antiferromagnets assisted by an external spin current

2018

Searching for novel spin caloric effects in antiferromagnets we study the properties of thermally activated magnons in the presence of an external spin current and temperature gradient. We predict the spin Peltier effect -- generation of a heat flux by spin accumulation -- in an antiferromagnetic insulator with cubic or uniaxial magnetic symmetry. This effect is related with spin-current induced splitting of the relaxation times of the magnons with opposite spin direction. We show that the Peltier effect can trigger antiferromagnetic domain wall motion with a force whose value grows with the temperature of a sample. At a temperature, larger than the energy of the low-frequency magnons, this…

PhysicsAcoustics and UltrasonicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnonFOS: Physical sciencesInsulator (electricity)02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTemperature gradientHeat fluxSeebeck coefficient0103 physical sciencesThermoelectric effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)AntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyCurrent density
researchProduct

Magnetic skyrmions: from fundamental to applications

2016

In this topical review, we will discuss recent advances in the field of skyrmionics (fundamental and applied aspects) mainly focusing on skyrmions that can be realized in thin film structures where an ultrathin ferromagnetic layer (<1 nm) is coupled to materials with large spin-orbit coupling. We review the basic topological nature of the skyrmion spin structure that can entail a stabilization due to the chiral exchange interaction present in many multilayer systems with structural inversion asymmetry. The static spin structures and the dynamics of the skyrmions are also discussed. In particular, we show that skyrmions can be displaced with high reliability and efficiency as needed for t…

PhysicsAcoustics and UltrasonicsCondensed matter physicsSkyrmion02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural scienceslogic gates; microwave oscillator; racetrack memory; skyrmion; spin-Hall effect; spin-torque diode effect; spin-transfer-torque; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Acoustics and Ultrasonics; Surfaces Coatings and FilmsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSkyrmionQuantum mechanics0103 physical scienceslogic gatesspin-transfer-torqueddc:530spin-torque diode effect010306 general physics0210 nano-technologySkyrmion; spin-transfer-torque; spin-Hall effect; racetrack memory; microwave oscillator; spin-torque diode effect; logic gatesspin-Hall effectracetrack memorymicrowave oscillatorJournal of Physics D: Applied Physics
researchProduct

Eulerian models of the rotating flexible wheelset for high frequency railway dynamics

2019

Abstract In this paper three formulations based on an Eulerian approach are presented to obtain the dynamic response of an elastic solid of revolution, which rotates around its main axis at constant angular velocity. The formulations are especially suitable for the study of the interaction of a solid with a non-rotating structure, such as occurs in the coupled dynamics of a railway wheelset with the track. With respect to previous publications that may adopt similar hypotheses, this paper proposes more compact formulations and eliminates certain numerical problems associated with the presence of second-order derivatives with respect to the spatial coordinates. Three different models are dev…

PhysicsAcoustics and UltrasonicsMechanical EngineeringMathematical analysisRotational symmetryEulerian pathBasis function02 engineering and technologyCondensed Matter Physics01 natural sciencesFinite element methodsymbols.namesake020303 mechanical engineering & transports0203 mechanical engineeringMechanics of MaterialsNormal mode0103 physical sciencessymbolsSolid of revolutionConstant angular velocity010301 acousticsCampbell diagram
researchProduct

Linear and nonlinear spin dynamics in multi-domain magnetoelastic antiferromagnets

2021

Antiferromagnets have recently surged as the prominent material platform for the next generation spintronics devices. Despite the remarkable abundance of antiferromagnets and the variety of their spin textures in nature, they share a widely common, if not ubiquitous, feature. Magnetoelasticity, which is expressed as strictions of different origin, relativistic and/or exchange, significantly contributes to the magnetic anisotropy of antiferromagnets. Crucially, a general theoretical framework able to address the role of domain walls on the spin dynamics in antiferromagnets in the presence of magnetoelasticity is lacking. Here we tackle this problem developing a very general macroscopic pheno…

PhysicsAcoustics and UltrasonicsSpin dynamicsSpintronicsCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDomain (software engineering)Nonlinear systemMagnetic anisotropytheory antiferromagnets spin dynamics nonlinear phenomenaPhenomenological modelAntiferromagnetismCondensed Matter::Strongly Correlated Electronsddc:530Statistical physicsSpin-½
researchProduct

Imaging magnetic scalar potentials by laser-induced fluorescence from bright and dark atoms

2014

We present a spectroscopic method for mapping two-dimensional distributions of magnetic field strengths (magnetic scalar potential lines) using charge-coupled device (CCD) recordings of the fluorescence patterns emitted by spin-polarized Cs vapour in a buffer gas exposed to inhomogeneous magnetic fields. The method relies on the position-selective destruction of spin polarization by magnetic resonances induced by multi-component oscillating magnetic fields, such that magnetic potential lines can be directly detected by the CCD camera. We also present a generic algebraic model allowing for the calculation of the fluorescence patterns and find excellent agreement with the experimental observa…

PhysicsAcoustics and UltrasonicsSpin polarizationAtomic Physics (physics.atom-ph)Buffer gasScalar (physics)FOS: Physical sciencesScalar potentialCondensed Matter PhysicsMolecular physicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMagnetic fieldPhysics - Atomic PhysicsMagnetic potentialLaser-induced fluorescenceImage resolution
researchProduct

Wave propagation in optical systems

1974

The intensity distribution in the image space of an optical system, due to an arbitrary object, is calculated by solving the problem of the propagation of a monochromatic light wave through the system. The system is assumed to be cylindrically symmetric with an arbitrary number of spherical surfaces. Analytic techniques based on the principle of stationary phase are used, and several advantages over ray-tracing techniques are obtained.

PhysicsAcoustics and UltrasonicsWave propagationbusiness.industryMathematical analysisLight waveCondensed Matter PhysicsSpace (mathematics)Surfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIntensity (physics)Image (mathematics)Distribution (mathematics)OpticsStationary phaseMonochromatic colorbusinessJournal of Physics D: Applied Physics
researchProduct

Brillouin light scattering study of Co$_{2}$Cr$_{0.6}$Fe$_{0.4}$Al and Co$_{2}$FeAl Heusler compounds

2008

The thermal magnonic spectra of Co$_{2}$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) and Co$_2$FeAl were investigated using Brillouin light scattering spectroscopy (BLS). For CCFA, the exchange constant A (exchange stiffness D) is found to be 0.48 $\mu$erg/cm (203 meV A$^2$), while for Co$_2$FeAl the corresponding values of 1.55 $\mu$erg/cm (370 meV A$^2$) were found. The observed asymmetry in the BLS spectra between the Stokes and anti-Stokes frequencies was assigned to an interplay between the asymmetrical profiles of hybridized Damon-Esbach and perpendicular standing spin-wave modes, combined with the optical sensitivity of the BLS signal to the upper side of the CCFA or Co$_2$FeAl film.

PhysicsCondensed Matter - Materials ScienceAcoustics and UltrasonicsScatteringmedia_common.quotation_subjectMagnonMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter PhysicsAsymmetryLight scatteringSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBrillouin zoneSpin waveAtomic physicsSpectroscopymedia_common
researchProduct