Search results for "Upervised learning"

showing 10 items of 87 documents

Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?

2020

Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers can be applied to the resulting linear problem. In this paper, a thorough comparison of possible and recently proposed, especially randomized, algorithms is carried out for this problem with a representative set of regression datasets. In addition, we compare MLM with shallow and deep feedforward neural network models and study the effects of the number of observations and the number of features with a special dat…

0209 industrial biotechnologyrandom projectionlcsh:Computer engineering. Computer hardwareComputational complexity theoryComputer scienceRandom projectionlcsh:TK7885-789502 engineering and technologyMachine learningcomputer.software_genresupervised learningapproximate algorithmsSet (abstract data type)regressioanalyysi020901 industrial engineering & automationdistance–based regressionalgoritmit0202 electrical engineering electronic engineering information engineeringordinary least–squaresbusiness.industrySupervised learningsingular value decompositionminimal learning machineMultilaterationprojektioRandomized algorithmkoneoppiminenmachine learningScalabilityFeedforward neural network020201 artificial intelligence & image processingArtificial intelligenceapproksimointibusinesscomputerMachine Learning and Knowledge Extraction
researchProduct

Classification par méthodes d’apprentissage supervisé et faiblement superviséd’images multimodales pour l’aide au diagnostic du lentigo malin en derm…

2021

Carried out in collaboration with the Saint-Étienne University Hospital, this work provides additional information to help the skin diagnosis by providing new decision methods on Lentigo Maligna and Lentigo Maligna Melanoma pathologies. To this end, the modalities regularly used in clinical conditions are made available to this work and are orchestrated within a multimodal process. Among image modalities, may be mentioned the clinical photography, the dermatoscopy, and the confocal reflectance microscopy. Initially, the first steps of this manuscript focus on reflectance confocal microscopy as the work in computer diagnostic assistance is relatively underdeveloped, in particular on the dete…

Upervised learning[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]Apprentissage profond[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingLentigo Maligna MelanomaImage classification[INFO.INFO-IM] Computer Science [cs]/Medical ImagingDermatoscopieDermatologyMultimodalité[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Dermatoscopy[INFO.INFO-IM]Computer Science [cs]/Medical ImagingApprentissage faiblement superviséMultimodalityDermatologieFusion de donnéesWeakly supervised learningLentigo MalignaDeep learningApprentissage superviséData fusionMicroscopie confocale par réflectanceClassification d'images[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Confocal reflectance microscopySupervised learning
researchProduct

Unsupervised learning of category-specific symmetric 3D keypoints from point sets

2020

Lecture Notes in Computer Science, 12370

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]FOS: Computer and information sciencesComputer sciencePlane symmetryComputer Vision and Pattern Recognition (cs.CV)Point cloudComputer Science - Computer Vision and Pattern Recognition02 engineering and technology010501 environmental sciences01 natural sciences[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI][INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Linear basis0202 electrical engineering electronic engineering information engineeringComputingMilieux_COMPUTERSANDEDUCATIONPoint (geometry)0105 earth and related environmental sciencesbusiness.industryCategory specific[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Pattern recognition16. Peace & justiceBenchmark (computing)Unsupervised learning020201 artificial intelligence & image processingArtificial intelligenceSymmetry (geometry)business
researchProduct

An adaptive probabilistic graphical model for representing skills in PbD settings

2010

business.industryComputer scienceProgramming by demonstrationBayesian probabilityProbabilistic logicMachine learningcomputer.software_genreUnsupervised learningArtificial intelligenceGraphical modelMachine Learning Imitation Learning Incremental Learning Dynamic Bayesian Network Growing Hierarchical Dynamic Bayesian NetworkAutomatic programmingbusinessHidden Markov modelcomputerDynamic Bayesian network
researchProduct

Machine Learning: An Overview and Applications in Pharmacogenetics.

2021

This narrative review aims to provide an overview of the main Machine Learning (ML) techniques and their applications in pharmacogenetics (such as antidepressant, anti-cancer and warfarin drugs) over the past 10 years. ML deals with the study, the design and the development of algorithms that give computers capability to learn without being explicitly programmed. ML is a sub-field of artificial intelligence, and to date, it has demonstrated satisfactory performance on a wide range of tasks in biomedicine. According to the final goal, ML can be defined as Supervised (SML) or as Unsupervised (UML). SML techniques are applied when prediction is the focus of the research. On the other hand, UML…

Structure (mathematical logic)Pharmacogenetics Supervised machine learning Unsupervised machine learningComputer sciencebusiness.industryComputational BiologyReviewQH426-470Machine learningcomputer.software_genreOutcome (game theory)Machine LearningUnified Modeling LanguagePharmacogeneticsGeneticsUnsupervised learningNarrative reviewsupervised machine learningArtificial intelligencebusinesscomputerunsupervised machine learningGenetics (clinical)BiomedicinePharmacogeneticscomputer.programming_languageGenes
researchProduct

A Pseudo-Supervised Approach to Improve a Recommender Based on Collaborative Filtering

2003

This PhD Thesis develops an optimal recommender. First of all, users accessing to a Web site are clustered. If a user belongs to a cluster, the system offers services which are usually accessed by users from the same cluster in a collaborative filtering scheme. A novel approach based on a users simulator and a dynamic recommendation system is proposed. The simulator is used to create the situations that one can find in a Web site. Introduction of dynamics in the recommender allows to change the clusters and in turn, the decisions which are taken. Since the system is based both on supervised and unsupervised learning whose borders are not too clear in our approach, we talk about a pseudo-sup…

Scheme (programming language)Information retrievalComputer sciencebusiness.industryCollaborative filteringUnsupervised learningArtificial intelligenceRecommender systembusinesscomputercomputer.programming_language
researchProduct

Different mechanisms underlie implicit visual statistical learning in honey bees and humans

2020

International audience; The ability of developing complex internal representations of the environment is considered a crucial antecedent to the emergence of humans’ higher cognitive functions. Yet it is an open question whether there is any fundamental difference in how humans and other good visual learner species naturally encode aspects of novel visual scenes. Using the same modified visual statistical learning paradigm and multielement stimuli, we investigated how human adults and honey bees ( Apis mellifera ) encode spontaneously, without dedicated training, various statistical properties of novel visual scenes. We found that, similarly to humans, honey bees automatically develop a comp…

Computer scienceSensory systemEnvironmentENCODEunsupervised learning03 medical and health sciences[SCCO]Cognitive science0302 clinical medicineCognitionMemoryAnimalsHumansLearninginternal representation030304 developmental biologyhuman visual cognition0303 health sciencesMultidisciplinaryRepresentation (systemics)Contrast (statistics)Cognition[SCCO] Cognitive scienceBeesBiological Sciencesinsect cognitionAntecedent (behavioral psychology)Unsupervised learningApis melliferaVisual learning030217 neurology & neurosurgeryCognitive psychology
researchProduct

Smartphone data analysis for human activity recognition

2017

In recent years, the percentage of the population owning a smartphone has increased significantly. These devices provide the user with more and more functions, so that anyone is encouraged to carry one during the day, implicitly producing that can be analysed to infer knowledge of the user’s context. In this work we present a novel framework for Human Activity Recognition (HAR) using smartphone data captured by means of embedded triaxial accelerometer and gyroscope sensors. Some statistics over the captured sensor data are computed to model each activity, then real-time classification is performed by means of an efficient supervised learning technique. The system we propose also adopts a …

education.field_of_studyParticipatory sensingComputer sciencebusiness.industryTriaxial accelerometerSupervised learningPopulationComputer Science (all)020206 networking & telecommunicationsContext (language use)Gyroscope02 engineering and technologyMachine learningcomputer.software_genrelaw.inventionTheoretical Computer ScienceActivity recognitionlaw0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceeducationbusinesscomputer
researchProduct

Retrieving Quantum Information with Active Learning

2019

Active learning is a machine learning method aiming at optimal design for model training. At variance with supervised learning, which labels all samples, active learning provides an improved model by labeling samples with maximal uncertainty according to the estimation model. Here, we propose the use of active learning for efficient quantum information retrieval, which is a crucial task in the design of quantum experiments. Meanwhile, when dealing with large data output, we employ active learning for the sake of classification with minimal cost in fidelity loss. Indeed, labeling only 5% samples, we achieve almost 90% rate estimation. The introduction of active learning methods in the data a…

Optimal designQuantum Physicsbusiness.industryComputer scienceActive learning (machine learning)media_common.quotation_subjectSupervised learningGeneral Physics and AstronomyFidelityFOS: Physical sciencesVariance (accounting)Machine learningcomputer.software_genre01 natural sciencesTask (project management)Quantum technology0103 physical sciencesArtificial intelligenceQuantum information010306 general physicsbusinessQuantum Physics (quant-ph)computermedia_commonPhysical Review Letters
researchProduct

Visual aftereffects and sensory nonlinearities from a single statistical framework

2015

When adapted to a particular scenery our senses may fool us: colors are misinterpreted, certain spatial patterns seem to fade out, and static objects appear to move in reverse. A mere empirical description of the mechanisms tuned to color, texture, and motion may tell us where these visual illusions come from. However, such empirical models of gain control do not explain why these mechanisms work in this apparently dysfunctional manner. Current normative explanations of aftereffects based on scene statistics derive gain changes by (1) invoking decorrelation and linear manifold matching/equalization, or (2) using nonlinear divisive normalization obtained from parametric scene models. These p…

Normalization (statistics)texture aftereffectComputer scienceadaptationunsupervised learningscene statisticslcsh:RC321-571Behavioral Neurosciencelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryDecorrelationBiological Psychiatrycolor aftereffectParametric statisticsOriginal ResearchCurves analysisbusiness.industryOptical illusionNonparametric statisticsScene statisticsMaximizationsequential principal curves analysisPsychiatry and Mental healthNeuropsychology and Physiological PsychologyNeurologyA priori and a posterioriArtificial intelligencebusinessAlgorithmNeurosciencemotion aftereffectFrontiers in Human Neuroscience
researchProduct