Search results for "VDP::Teknologi: 500"
showing 10 items of 895 documents
A 3D Non-Stationary Cluster Channel Model for Human Activity Recognition
2019
Author's accepted manuscript. © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper proposes a three-dimensional (3D) non- stationary fixed-to-fixed indoor channel simulator model for human activity recognition. The channel model enables the formulation of temporal variations of the received signal caused by a moving human. The moving human is modelled by …
Adaptive Backstepping Control of a 2-DOF Helicopter System with Uniform Quantized Inputs
2020
Author's accepted manuscript © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper proposes a new adaptive controller for a 2-Degree of Freedom (DOF) helicopter system in the presence of input quantization. The inputs are quantized by uniform quantizers. A nonlinear mathematical model is derived for the 2-DOF helicopter system based on Euler-Lagrange equat…
Adaptive Backstepping Control of a 2-DOF Helicopter
2019
This paper proposes an adaptive nonlinear controller for a 2-Degree of Freedom (DOF) helicopter. The proposed controller is designed using backstepping control technique and is used to track the pitch and yaw position references independently. A MIMO nonlinear mathematical model is derived for the 2DOF helicopter based on Euler-Lagrange equations, where the system parameters and the control coefficients are uncertain. Unlike some existing control schemes for the helicopter control, the developed controller does not require the knowledge on the system uncertain parameters. Updating laws are used to estimate the unknown parameters. It is shown that not only the global stability is guaranteed …
Adaptive Backstepping Control of Nonlinear Uncertain Systems With Quantized States
2019
This paper investigates the stabilization problem for uncertain nonlinear systems with quantized states. All states in the system are quantized by a static bounded quantizer, including uniform quantizer, hysteresis-uniform quantizer, and logarithmic-uniform quantizer as examples. An adaptive backstepping-based control algorithm, which can handle discontinuity, resulted from the state quantization and a new approach to stability analysis are developed by constructing a new compensation scheme for the effects of the state quantization. Besides showing the global ultimate boundedness of the system, the stabilization error performance is also established and can be improved by appropriately adj…
Modeling of an active torsion bar automotive suspension for ride comfort and energy analysis in standard road profiles
2019
Abstract Chassis technology is evolving towards active suspension, in which actuators can provide forces to each wheel individually. This overcomes the traditional trade-off between comfort and handling, at the expense of increased complexity and electric consumption. To reduce power demand, regenerative solutions capable of harvesting a certain amount of energy otherwise dissipated in vehicle suspensions and to enhance vehicle dynamics for improving ride comfort and road safety at the same time have been researched. In this paper, an active suspension based on a torsion bar is modeled and analyzed under the excitation from standardized road profiles according to the ISO 8608 norm. A skyhoo…
Model-Free Sliding-Mode-Based Detection and Estimation of Backlash in Drives With Single Encoder
2021
Backlash is a frequently encountered problem for various drives, especially those equipped with a single encoder onside of the controlled actuator. This brief proposes a sliding-mode differentiator-based estimation of unknown backlash size while measuring the actuator displacement only. Neither actuator nor load dynamics are explicitly known, while a principal second-order actuator behavior is assumed. We make use of the different perturbation dynamics distinctive for different backlash modes and an unbounded impulse-type perturbation at impact. The latter leads to transient loss of the sliding-mode and allows for detecting an isolated time instant of the backlash occurrence. The proposed m…
On Stability of Virtual Torsion Sensor for Control of Flexible Robotic Joints with Hysteresis
2019
Author's accepted manuscript (postprint). This article has been published in a revised form in Robotica, http://doi.org/10.1017/S0263574719001358. This version is free to view and download for private research and study only. Not for re-distribution or re-use. © 2019 Cambridge University Press. Available from 25/03/2020. Aim of the virtual torsion sensor (VTS) is in observing the nonlinear deflection in the flexible joints of robotic manipulators and, by its use, improving positioning control of the joint load. This model-based approach utilizes the motor-side sensing only and, therefore, replaces the load-side encoders at nearly zero hardware costs. For being applied in the closed control …
Anti-swing control of a hydraulic loader crane with a hanging load
2021
Abstract In this paper, anti-swing control for a hydraulic loader crane is presented. The difference between hydraulic and electric cranes are discussed to show the challenges associated with hydraulic actuation. The hanging load dynamics and relevant kinematics of the crane are derived to create the 2-DOF anti-swing controller. The anti-swing controller is added to the electro-hydraulic motion controller via feedforward. A dynamic simulation model of the crane is made, and the control system is evaluated in simulations with a path controller in actuator space. Simulation results show significant reduction in the load swing angle during motion. Experiments are carried out to verify the perf…
Guidelines to Select Between Self-Contained Electro-Hydraulic and Electro-Mechanical Cylinder
2020
This research paper presents guidelines on how to select between self-contained electro-hydraulic and electromechanical cylinders. An example based on the motion control of a single-boom crane is studied. The sizing process of the different off-the-shelf components is analyzed in terms of design impact when replacing a traditional valve-controlled hydraulic cylinder. The self-contained electro-hydraulic solution is the best choice when a risk for high impact forces is present, when the required output power level lies continuously above 2 kW, or when installation space, weight, and cost are critical design objectives. However, the electro-mechanical solution is expected to show more control…
A robust two-feedback loops position control algorithm for compliant low-cost series elastic actuators
2019
Elastic joints are considered to outperform rigid joints in terms of peak dynamics, collision tolerance, robustness, and energy efficiency. Therefore, intrinsically elastic joints have become progressively prominent over the last years for a variety of robotic applications. In this article, a two-feedback loops position control algorithm is proposed for an elastic actuator to deal with the influence from external disturbances. The considered elastic actuator was recently designed by our research group for Serpens, a low-cost, open-source and highly-compliant multi-purpose modular snake robot. In particular, the inner controller loop is implemented as a model reference adaptive controller (M…