Search results for "VECTOR BOSON"
showing 10 items of 70 documents
HAWK 2.0: A Monte Carlo program for Higgs production in vector-boson fusion and Higgs strahlung at hadron colliders
2014
The Monte Carlo integrator HAWK provides precision predictions for Higgs production at hadron colliders in vector-boson fusion and Higgs strahlung, i.e. in production processes where the Higgs boson is Attached to WeaK bosons. The fully differential predictions include the full QCD and electroweak next-to-leading-order corrections. Results are computed as integrated cross sections and as binned distributions for important hadron-collider observables.
Measurements of Higgs boson properties in the diphoton decay channel with 36 fb−1 of pp collision data at s=13 TeV with the ATLAS detector
2018
Properties of the Higgs boson are measured in the two-photon final state using 36.1 fb-1 of proton? proton collision data recorded at ffiffi √s = 13 TeV by the ATLAS experiment at the Large Hadron Collider. Cross-section measurements for the production of a Higgs boson through gluon-gluon fusion, vectorboson fusion, and in association with a vector boson or a top-quark pair are reported. The signal strength, defined as the ratio of the observed to the expected signal yield, is measured for each of these production processes as well as inclusively. The global signal strength measurement of 0.99 ± 0.14 improves on the precision of the ATLAS measurement at √s = 7 and 8 TeV by a factor of two. …
Transverse-momentum resummation for vector-boson pair production at NNLL+NNLO
2015
We consider the transverse-momentum ($p_T$) distribution of $ZZ$ and $W^+W^-$ boson pairs produced in hadron collisions. At small $p_T$, the logarithmically enhanced contributions due to multiple soft-gluon emission are resummed to all orders in QCD perturbation theory. At intermediate and large values of $p_T$, we consistently combine resummation with the known fixed-order results. We exploit the most advanced perturbative information that is available at present: next-to-next-to-leading logarithmic resummation combined with the next-to-next-to-leading fixed-order calculation. After integration over $p_T$, we recover the known next-to-next-to-leading order result for the inclusive cross se…
Tevatron constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quark pairs.
2015
et al.
Search for the Associated Production of the Standard-Model Higgs Boson in the All-Hadronic Channel
2009
We report on a search for the standard-model Higgs boson in pp collisions at s=1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(-> qq/qq('))H(-> bb) decay for Higgs boson masses of 100-150 GeV/c(2) using data from run II at the Fermilab Tevatron. For m(H)=120 GeV/c(2), we exclude cross sections larger than 38 times the standard-m…
The $Z$ boson in the Framed Standard Model
2018
The framed standard model (FSM), constructed initially for explaining the existence of three fermion generations and the hierarchical mass and mixing patterns of quarks and leptons, suggests also a "hidden sector" of particles including some dark matter candidates. It predicts in addition a new vector boson $G$, with mass of order TeV, which mixes with the $\gamma$ and $Z$ of the standard model yielding deviations from the standard mixing scheme, all calculable in terms of a single unknown parameter $m_G$. Given that standard mixing has been tested already to great accuracy by experiment, this could lead to contradictions, but it is shown here that for the three crucial and testable cases s…
Four-dimensional unsubtraction with massive particles
2016
We extend the four-dimensional unsubtraction method, which is based on the loop-tree duality (LTD), to deal with processes involving heavy particles. The method allows to perform the summation over degenerate IR configurations directly at integrand level in such a way that NLO corrections can be implemented directly in four space-time dimensions. We define a general momentum mapping between the real and virtual kinematics that accounts properly for the quasi-collinear configurations, and leads to an smooth massless limit. We illustrate the method first with an scalar toy example, and then analyse the case of the decay of a scalar or vector boson into a pair of massive quarks. The results pr…
Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC
2013
We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portu…
Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment
2019
Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for H → invisible decays where H is produced according to the standard model via vector boson fusion, Z(ℓℓ)H, and W/Z(had)H, all performed with the ATLAS detector using 36.1 fb⁻¹ of pp collisions at a center-of-mass energy of √s = 13 TeV at the LHC. In combination with the results at √s = 7 and 8 TeV, an exclusion limit on the H → invisible branching ratio of 0.26(0.17-0.05+0.07) at 95% confidence level is observed (expected).
W±-boson production in p–Pb collisions at √sNN = 8.16 TeV and Pb–Pb collisions at √sNN = 5.02 TeV
2023
The production of the W± bosons measured in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision sNN = 8.16 TeV and Pb–Pb collisions at sNN = 5.02 TeV with ALICE at the LHC is presented. The W± bosons are measured via their muonic decay channel, with the muon reconstructed in the pseudorapidity region −4 10 GeV/c. While in Pb–Pb collisions the measurements are performed in the forward (2.5 < ycmsμ < 4) rapidity region, in p–Pb collisions, where the centre-of-mass frame is boosted with respect to the laboratory frame, the measurements are performed in the backward (−4.46 < ycmsμ < −2.96) and forward (2.03 < ycmsμ < 3.53) rapidity regions. The W− and W+ production cross se…