Search results for "VECTOR"
showing 10 items of 2660 documents
The Use of Artificial Intelligence in Disaster Management - A Systematic Literature Review
2019
Whenever a disaster occurs, users in social media, sensors, cameras, satellites, and the like generate vast amounts of data. Emergency responders and victims use this data for situational awareness, decision-making, and safe evacuations. However, making sense of the generated information under time-bound situations is a challenging task as the amount of data can be significant, and there is a need for intelligent systems to analyze, process, and visualize it. With recent advancements in Artificial Intelligence (AI), numerous researchers have begun exploring AI, machine learning (ML), and deep learning (DL) techniques for big data analytics in managing disasters efficiently. This paper adopt…
Semi-Supervised Support Vector Biophysical Parameter Estimation
2008
Two kernel-based methods for semi-supervised regression are presented. The methods rely on building a graph or hypergraph Laplacian with both the labeled and unlabeled data, which is further used to deform the training kernel matrix. The deformed kernel is then used for support vector regression (SVR). The semi-supervised SVR methods are sucessfully tested in LAI estimation and ocean chlorophyll concentration prediction from remotely sensed images.
Automatic Identification of Watermarks and Watermarking Robustness Using Machine Learning Techniques
2021
The goal of this article is to propose a framework for automatic identification of watermarks from modified host images. The framework can be used with any watermark embedding/extraction system and is based on models built using machine learning (ML) techniques. Any supervised ML approach can be theoretically chosen. An important part of our framework consists in building a stand-alone module, independent of the watermarking system, for generating two types of watermarks datasets. The first type of datasets, that we will name artificially datasets, is generated from the original images by adding noise with an imposed maximum level of noise. The second type contains altered watermarked image…
Regularized RBF Networks for Hyperspectral Data Classification
2004
In this paper, we analyze several regularized types of Radial Basis Function (RBF) Networks for crop classification using hyperspectral images. We compare the regularized RBF neural network with Support Vector Machines (SVM) using the RBF kernel, and AdaBoost Regularized (ABR) algorithm using RBF bases, in terms of accuracy and robustness. Several scenarios of increasing input space dimensionality are tested for six images containing six crop classes. Also, regularization, sparseness, and knowledge extraction are paid attention.
ConvLSTM Neural Networks for seismic event prediction in Chile
2021
Predicting seismic risk is a challenging task in order to avoid catastrophic effects. In this work, two models based on Convolutional Network (CNN) and Long Short Term Memory (LSTM) networks are proposed to predict the seismic risk in Chile. In particular, a ConvLSTM and a Multi-column ConvLSTM network are used for the prediction of the average number of seismic events greater than 2,8 magnitude on the Richter scale, in the Chilean regions of Coquimbo and Araucania between the years 2010 and 2017. For this model, the values of the intensity function estimated through an ETAS model and the accumulated displacement prior to a the seismic events are used as inputs. In particular, given the spa…
Classification of Satellite Images with Regularized AdaBoosting of RBF Neural Networks
2008
Two-level branch prediction using neural networks
2003
Dynamic branch prediction in high-performance processors is a specific instance of a general time series prediction problem that occurs in many areas of science. Most branch prediction research focuses on two-level adaptive branch prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and fields for novel solutions to the problem. In this paper, we examine the application of neural networks to dynamic branch prediction. We retain the first level history register of conventional two-level predictors and replace the second level PHT with a neural network. Two neural networks are considered: a learning vec…
Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
2021
One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…
A new apparatus for the study of avoidance conditioning in fishes
1981
An apparatus for the study of avoidance conditioning in fishes is described. The chamber is cylindrical in shape, with shocking electrodes placed above and below the animals, and response is defined as swimming a predetermined distance in either direction along a circumferential path. This apparatus has several advantages over the conventional shuttlebox: (1)There is little constraint on the direction of swimming; (2) the magnitude of response (swimming distance) required for avoidance can easily be varied over a wide range; and (3) variation in the effectiveness of shock with the position of the animal relative to the position of the electrodes is minimized. Some sample data obtained in a …
Vector-borne and zoonotic infections and their relationships with regional and socioeconomic statuses: An ID-IRI survey in 24 countries of Europe, Af…
2021
Background: In this cross-sectional, international study, we aimed to analyze vector-borne and zoonotic infections (VBZI), which are significant global threats. Method: VBZIs’ data between May 20–28, 2018 was collected. The 24 Participatingcountries were classified as lower-middle, upper-middle, and high-income. Results: 382 patients were included. 175(45.8%) were hospitalized, most commonly in Croatia, Egypt, and Romania(P = 0.001). There was a significant difference between distributions of VBZIs according to geographical regions(P < 0.001). Amebiasis, Ancylostomiasis, Blastocystosis, Cryptosporidiosis, Giardiasis, Toxoplasmosis were significantly more common in the Middle-East while B…