Search results for "VENTRAL TEGMENTAL AREA"
showing 10 items of 64 documents
2018
The origin of spontaneous preference for dietary lipids in humans and rodents is debated, though recent compelling evidence has shown the existence of fat taste that might be considered a sixth taste quality. We investigated the implication of gustatory and reward brain circuits, triggered by linoleic acid (LA), a long-chain fatty acid. The LA was applied onto the circumvallate papillae for 30 min in conscious C57BL/6J mice, and neuronal activation was assessed using c-Fos immunohistochemistry. By using real-time reverse transcription polymerase chain reaction (RT-qPCR), we also studied the expression of mRNA encoding brain-derived neurotrophic factor (BDNF), Zif-268, and Glut-1 in some bra…
Selective α-synuclein knockdown in monoamine neurons by intranasal oligonucleotide delivery: potential therapy for parkinson’s disease
2018
Progressive neuronal death in brainstem nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson’s disease (PD). Reduction of α-synuclein levels is therefore a potential therapy for PD. However, because α-synuclein is essential for neuronal development and function, α-synuclein elimination would dramatically impact brain function. We previously developed conjugated small interfering RNA (siRNA) sequences that selectively target serotonin (5-HT) or norepinephrine (NE) neurons after intranasal administration. Here, we used this strategy to conjugate inhibitory oligonucleotides, siRNA and antisense oligonucleotide (ASO), with the triple monoamine reuptake …
Glutamate and opioid antagonists modulate dopamine levels evoked by innately attractive male chemosignals in the nucleus accumbens of female rats
2017
Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist b-funaltrexamine into the posterior ventral tegmental area does no…
Lateral Habenula 5-HT2C Receptor Function Is Altered by Acute and Chronic Nicotine Exposures
2021
Serotonin (5-HT) is important in some nicotine actions in the CNS. Among all the 5-HT receptors (5-HTRs), the 5-HT2CR has emerged as a promising drug target for smoking cessation. The 5-HT2CRs within the lateral habenula (LHb) may be crucial for nicotine addiction. Here we showed that after acute nicotine tartrate (2 mg/kg, i.p.) exposure, the 5-HT2CR agonist Ro 60-0175 (5–640 µg/kg, i.v.) increased the electrical activity of 42% of the LHb recorded neurons in vivo in rats. Conversely, after chronic nicotine treatment (6 mg/kg/day, i.p., for 14 days), Ro 60-0175 was incapable of affecting the LHb neuronal discharge. Moreover, acute nicotine exposure increased the 5-HT2CR-immunoreactive (IR)…
Central functional response to the novel peptide cannabinoid, hemopressin.
2013
Hemopressin is the first peptide ligand to be described for the CB₁ cannabinoid receptor. Hemopressin acts as an inverse agonist in vivo and can cross the blood-brain barrier to both inhibit appetite and induce antinociception. Despite being highly effective, synthetic CB₁ inverse agonists are limited therapeutically due to unwanted, over dampening of central reward pathways. However, hemopressin appears to have its effect on appetite by affecting satiety rather than reward, suggesting an alternative mode of action which might avoid adverse side effects. Here, to resolve the neuronal circuitry mediating hemopressin's actions, we have combined blood-oxygen-level-dependent, pharmacological-ch…
Systemic administration of D-penicillamine prevents the locomotor activation after intra-VTA ethanol administration in rats.
2010
Although recently published studies seem to confirm the important role displayed by acetaldehyde (ACH), the main metabolite of ethanol, in the behavioral effects of ethanol, the origin of ACH is still a matter of debate. While some authors confer more importance to the central (brain metabolism) origin of ACH, others indicate that the hepatic origin could be more relevant. In this study we have addressed this topic using an experimental approach that combines local microinjections of ethanol into the ventral tegmental area (VTA) (which guarantees the brain origin of the ACH) to induce motor activation in rats together with systemic administration (i.p.) of several doses (0, 12.5, 25 and 50 …
m-Chlorophenylpiperazine excites non-dopaminergic neurons in the rat Substantia Nigra and Ventral Tegmental Area by activating serotonin-2c receptors
2001
In vivo electrophysiological techniques were used to study the effect of m-chlorophenylpiperazine, a non-selective serotonin-2C receptor agonist, on the activity of non-dopaminergic neurons in the substantia nigra pars reticulata and the ventral tegmental area of anesthetized rats. Intravenous administration of m-chlorophenylpiperazine (5–320 μg/kg) caused a dose-dependent increase in the basal firing rate of a subpopulation of nigral neurons which do not respond to a footpinch stimulus [P(0) neurons], whereas it did not affect the activity of neurons which are responsive to the footpinch [P(+) neurons]. However, m-chlorophenylpiperazine (5–320 μg/kg) excited all non-dopaminergic neurons sa…
Cannabis and the Mesolimbic System
2016
Abstract Cannabis sativa (hemp) is a flowering annual plant whose phytochemical by-products, hashish and marihuana, are the most widely produced and most frequently used illicit drugs in Europe. Δ 9 -Tetrahydrocannabinol is the primary psychoactive constituent, responsible, in a dose-related manner, for euphoria, cognitive effects, and psychotic symptoms, as well as the addictive potential of smoked cannabis due to its interference with the mesolimbic dopaminergic system. Cannabis as well as endocannabinoids acts mainly at the presynaptic levels in several brain regions, including the nucleus accumbens and ventral tegmental area, where it modulates synaptic activity. Through the modulation …
Salsolinol and ethanol-derived excitation of dopamine mesolimbic neurons: new insights
2013
Evidence supporting the essential role of brain-derived ethanol metabolites in the excitation of dopamine (DA) midbrain neurons has multiplied in the last 10–15 years. The pioneer and influential behavioral studies by CM Aragon and colleagues (see Correa et al., 2012 for a complete review) and more recent data (Sanchez-Catalan et al., 2009; Marti-Prats et al., 2010, 2013) have repeatedly demonstrated the crucial role displayed by acetaldehyde (ACD) in the locomotor and other behavioral responses elicited by ethanol. Although these experiments mainly used an indirect measure (exploratory locomotion) as an index of the excitation of DA neurons in the ventral tegmental area (VTA), results stro…
Pre-Clinical Studies with D-Penicillamine as a Novel Pharmacological Strategy to Treat Alcoholism: Updated Evidences
2017
Ethanol, as other drugs of abuse, is able to activate the ventral tegmental area dopamine (VTA-DA) neurons leading to positively motivational alcohol-seeking behavior and use, and, ultimately to ethanol addiction. In the last decades, the involvement of brain-derived acetaldehyde (ACD) in the ethanol actions in the mesolimbic pathway has been widely demonstrated. Consistent published results have provided a mechanistic support to the use of ACD inactivating agents to block the motivational and reinforcing properties of ethanol. Hence, in the last years, several pre-clinical studies have been performed in order to analyze the effects of the sequestering ACD agents in the prevention of ethano…