Search results for "VIRUSES"

showing 10 items of 1182 documents

Multi-virion infectious units arise from free viral particles in an enveloped virus

2017

Many animal viruses are enveloped in a lipid bilayer uptaken from cellular membranes. Since viral surface proteins bind to these membranes to initiate infection, we hypothesized that free virions may also be capable of interacting with the envelopes of other virions extracellularly. Here, we demonstrate this hypothesis in the vesicular stomatitis virus (VSV), a prototypic negative-strand RNA virus composed by an internal ribonucleocapsid, a matrix protein, and an external envelope1. Using microscopy, dynamic light scattering, differential centrifugation, and flow cytometry, we show that free viral particles can spontaneously aggregate into multi-virion infectious units. We also show that, f…

0301 basic medicineMicrobiology (medical)viruses030106 microbiologyImmunologyVirus AttachmentCentrifugationPhosphatidylserinesPlasma protein bindingBiologyApplied Microbiology and BiotechnologyMicrobiologyArticle03 medical and health sciencesViral Envelope ProteinsViral envelopeGeneticsLipid bilayerDifferential centrifugationchemistry.chemical_classificationViral matrix proteinVirionRNA virusVesiculovirusCell BiologyFlow Cytometrybiology.organism_classificationVirologyDynamic Light Scattering3. Good healthMicroscopy Electron030104 developmental biologychemistryVesicular stomatitis virusGlycoproteinProtein BindingNature Microbiology
researchProduct

Viability RT-qPCR to Distinguish Between HEV and HAV With Intact and Altered Capsids

2018

The hepatitis E virus (HEV) is an emerging pathogen showing a considerable increase in the number of reported cases in Europe mainly related to the ingestion of contaminated food. As with other relevant viral foodborne pathogens, real-time reverse transcriptase polymerase chain reaction (RT-qPCR) is the gold standard for HEV detection in clinical, food, and environmental samples, but these procedures cannot discriminate between inactivated and potentially infectious viruses. Thus, the aim of this study was to develop a viability PCR method to discriminate between native, heat-, and high-pressure processing (HPP)-treated HEV using the hepatitis A virus (HAV) as a cultivable surrogate. To thi…

0301 basic medicineMicrobiology (medical)viruses030106 microbiologylcsh:QR1-502viability RT-qPCRBiologymedicine.disease_causeMicrobiologylcsh:Microbiologylaw.invention03 medical and health sciencesHepatitis E viruslawmedicineIngestionPolymerase chain reactionOriginal ResearchInfectivitybusiness.industryfoodborne virusGold standard (test)Food safetyVirologyReverse transcriptaseHAVfood safety030104 developmental biologyCapsidHEVbusinessintercalating dyeFrontiers in Microbiology
researchProduct

Collective Infectious Units in Viruses

2017

Increasing evidence indicates that viruses do not simply propagate as independent virions among cells, organs, and hosts. Instead, viral spread is often mediated by structures that simultaneously transport groups of viral genomes, such as polyploid virions, aggregates of virions, virion-containing proteinaceous structures, secreted lipid vesicles, and virus-induced cell-cell contacts. These structures increase the multiplicity of infection, independently of viral population density and transmission bottlenecks. Collective infectious units may contribute to the maintenance of viral genetic diversity, and could have implications for the evolution of social-like virus-virus interactions. These…

0301 basic medicineMicrobiology (medical)virusesBiologyMicrobiologyArticle03 medical and health sciencesMultiplicity of infectionImmunityVirologyAnimalsGeneticsGenetic diversityVirionGenetic VariationBiological EvolutionVirologyMicrovesiclesComplementation030104 developmental biologyInfectious DiseasesVirus DiseasesViral genomesViral spreadLipid vesicleBaculoviridaeTrends in Microbiology
researchProduct

2020

Coxsackievirus B (CVB) enteroviruses are common pathogens that can cause acute and chronic myocarditis, dilated cardiomyopathy, aseptic meningitis, and they are hypothesized to be a causal factor in type 1 diabetes. The licensed enterovirus vaccines and those currently in clinical development are traditional inactivated or live attenuated vaccines. Even though these vaccines work well in the prevention of enterovirus diseases, new vaccine technologies, like virus-like particles (VLPs), can offer important advantages in the manufacturing and epitope engineering. We have previously produced VLPs for CVB3 and CVB1 in insect cells. Here, we describe the production of CVB3-VLPs with enhanced pro…

0301 basic medicineMicrobiology (medical)virusesCoxsackievirusmedicine.disease_causecomplex mixturesMicrobiologyVirusEpitope03 medical and health sciences0302 clinical medicineImmune systemVirologymedicineEnterovirus 71030212 general & internal medicineAttenuated vaccinebiologyChemistryPoliovirusvirus diseasesbiology.organism_classificationVirology3. Good health030104 developmental biologyEnterovirusMicroorganisms
researchProduct

Functional display of an alpha2 integrin-specific motif (RKK) on the surface of baculovirus particles.

2005

The use of baculovirus vectors shows promise as a tool for gene delivery into mammalian cells. These insect viruses have been shown to transduce a variety of mammalian cell lines, and gene transfer has also been demonstrated in vivo. In this study, we generated two recombinant baculovirus vectors displaying an integrin-specific motif, RKK, as a part of two different loops of the green fluorescent protein (GFP) fused with the major envelope protein gp64 of Autographa californica M nucleopolyhedrovirus. By enzyme linked immunosorbent assays, these viruses were shown to bind a peptide representing the receptor binding site of an α2 integrin, the α2I-domain. However, the interaction was not st…

0301 basic medicineModels MolecularCancer ResearchInsectavirusesmedia_common.quotation_subjectAmino Acid MotifsGreen Fluorescent ProteinsIntegrin alpha2PeptideEnzyme-Linked Immunosorbent AssayCHO CellsBiologyGene deliveryGreen fluorescent proteinCell Line03 medical and health sciences0302 clinical medicineCricetinaeAnimalsCloning MolecularInternalizationmedia_commonchemistry.chemical_classificationMicroscopy ConfocalPhospholipase CWild typeGene Transfer Techniquesbiology.organism_classificationFlow CytometryMolecular biologyRecombinant ProteinsProtein Structure TertiaryAutographa californica030104 developmental biologyEnzymeOncologychemistryMicroscopy FluorescenceMutagenesis030220 oncology & carcinogenesisType C PhospholipasesElectrophoresis Polyacrylamide GelPeptidesBaculoviridaeViral Fusion ProteinsPlasmidsProtein BindingTechnology in cancer researchtreatment
researchProduct

Structure of AP205 Coat Protein Reveals Circular Permutation in ssRNA Bacteriophages.

2016

We are thankful to the MAX-lab staff for their support during our visit at the synchrotron.; International audience; AP205 is a single-stranded RNA bacteriophage that has a coat protein sequence not similar to any other known single-stranded RNA phage. Here, we report an atomic-resolution model of the AP205 virus-like particle based on a crystal structure of an unassembled coat protein dimer and a cryo-electron microscopy reconstruction of the assembled particle, together with secondary structure information from site-specific solid-state NMR data. The AP205 coat protein dimer adopts the conserved Leviviridae coat protein fold except for the N-terminal region, which forms a beta-hairpin in …

0301 basic medicineModels MolecularRNA bacteriophageViral proteinCryo-electron microscopyProtein Conformation010402 general chemistrymedicine.disease_causeCrystallography X-Ray01 natural sciencesvirus-like particleBacteriophage03 medical and health sciencesStructural Biology[CHIM.ANAL]Chemical Sciences/Analytical chemistryLeviviridaemedicineRNA VirusesBacteriophages[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Molecular BiologyProtein secondary structurebiologyCryoelectron MicroscopyRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologycircular permutationRNA PhagesCircular permutation in proteinsbiology.organism_classification3. Good health0104 chemical sciencesCrystallography030104 developmental biologycoat proteinBiophysicsLeviviridaeCapsid ProteinsJournal of molecular biology
researchProduct

Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors.

2016

Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGI…

0301 basic medicineMuromegalovirusEpitopes T-LymphocyteCD8-Positive T-LymphocytesLymphocyte ActivationPathology and Laboratory MedicineBiochemistryEpitopeMass SpectrometryMiceWhite Blood Cells0302 clinical medicineAnimal CellsMedicine and Health SciencesCytotoxic T celllcsh:QH301-705.5Antigens ViralImmune ResponseStainingVaccines SyntheticbiologyT CellsCell StainingHerpesviridae InfectionsFlow CytometryRecombinant Proteins3. Good healthmedicine.anatomical_structureMedical MicrobiologyViral PathogensVirusesHuman CytomegalovirusCellular TypesPathogensResearch Articlelcsh:Immunologic diseases. AllergyHerpesvirusesT cellImmune CellsAntigen presentationImmunologyCytotoxic T cellsMajor histocompatibility complexResearch and Analysis MethodsMicrobiology03 medical and health sciencesViral ProteinsImmune systemAntigenVirologyGeneticsmedicineAnimalsAntigen-presenting cellMolecular Biology TechniquesMolecular BiologyMicrobial PathogensBlood CellsImmunodominant EpitopesOrganismsBiology and Life SciencesProteinsViral VaccinesCell BiologyVirology030104 developmental biologylcsh:Biology (General)Specimen Preparation and Treatmentbiology.proteinMutagenesis Site-DirectedParasitologylcsh:RC581-607PeptidesDNA virusesImmunologic Memory030215 immunologyChromatography LiquidCloningPLoS pathogens
researchProduct

The Mouse Cytomegalovirus Gene m42 Targets Surface Expression of the Protein Tyrosine Phosphatase CD45 in Infected Macrophages

2016

The receptor-like protein tyrosine phosphatase CD45 is expressed on the surface of cells of hematopoietic origin and has a pivotal role for the function of these cells in the immune response. Here we report that following infection of macrophages with mouse cytomegalovirus (MCMV) the cell surface expression of CD45 is drastically diminished. Screening of a set of MCMV deletion mutants allowed us to identify the viral gene m42 of being responsible for CD45 down-modulation. Moreover, expression of m42 independent of viral infection upon retroviral transduction of the RAW264.7 macrophage cell line led to comparable regulation of CD45 expression. In immunocompetent mice infected with an m42 del…

0301 basic medicineMuromegalovirusGenes ViralvirusesCell MembranesFluorescent Antibody TechniqueNEDD4Protein tyrosine phosphatasePathology and Laboratory MedicineBiochemistryLigasesWhite Blood CellsMice0302 clinical medicineSpectrum Analysis TechniquesUbiquitinAnimal CellsMedicine and Health SciencesBiology (General)Regulation of gene expressionStainingMice Inbred BALB CbiologyChemistryCell StainingAntigens CD45Herpesviridae InfectionsHuman cytomegalovirusFlow Cytometry3. Good healthEnzymesSpectrophotometryMedical MicrobiologyViral PathogensViruses293T cellsCell linesHuman CytomegalovirusCytophotometryCellular TypesCellular Structures and OrganellesPathogensBiological culturesBIOMEDICINA I ZDRAVSTVO. Temeljne medicinske znanosti.Research ArticleGene Expression Regulation ViralHerpesvirusesMCMV ; m42 ; CD45QH301-705.5Immune CellsImmunologyImmunoblottingDown-RegulationResearch and Analysis MethodsMicrobiologyGene product03 medical and health sciencesVirologyGeneticsAnimalsHumansMolecular BiologyMicrobial PathogensBlood CellsMacrophagesHEK 293 cellsBIOMEDICINE AND HEALTHCARE. Basic Medical Sciences.OrganismsBiology and Life SciencesProteinsMembrane ProteinsProtein phosphatase 2Cell BiologyRC581-607Ubiquitin LigasesMolecular biologyViral Replication030104 developmental biologyHEK293 CellsRAW 264.7 CellsViral replicationSpecimen Preparation and Treatmentbiology.proteinEnzymologyLeukocyte Common AntigensParasitologyImmunologic diseases. AllergyDNA viruses030215 immunology
researchProduct

Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing

2017

[EN] Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplastreplicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear pot…

0301 basic medicineMutation rateChloroplastsViroidvirusesPospiviroidaeArtificial Gene Amplification and ExtensionPlant ScienceSelf-CleavageVirus ReplicationBiochemistryPolymerase Chain ReactionGenomeDatabase and Informatics MethodsSequencing techniquesRibozymeNucleic AcidsRibozymesBiology (General)GeneticsHigh-Throughput Nucleotide Sequencingfood and beveragesRNA sequencingViroidsEnzymesAvsunviroidaeDeletion MutationVirusesPhysical SciencesRNA ViralIn-VivoSequence AnalysisResearch ArticleSubstitution MutationHammerhead RibozymesQH301-705.5Materials by StructureBioinformaticsEvolutionMaterials ScienceImmunologyPlant PathogensGenerationReplicationBiologyMicrobiology03 medical and health sciencesSequence Motif AnalysisVirologyGeneticsSolanum melongenaRNA-PolymeraseMolecular BiologyPotato spindle tuber viroidPlant DiseasesMatter030102 biochemistry & molecular biologyPoint mutationOrganismsBiology and Life SciencesProteinsRNAReverse Transcriptase-Polymerase Chain ReactionRC581-607Plant Pathologybiology.organism_classificationVirologyResearch and analysis methodsMolecular biology techniques030104 developmental biologyMutagenesisOligomersMutationEnzymologyRNAMotifParasitologyImmunologic diseases. AllergyPLOS Pathogens
researchProduct

Mechanisms of viral mutation

2016

The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be intro…

0301 basic medicineMutation rateEvolutionMutation ratevirusesGenome ViralReviewBiologyVirus ReplicationGenetic diversityVirus03 medical and health sciencesCellular and Molecular NeuroscienceMolecular BiologySuppressor mutationRecombination GeneticPharmacologyGeneticsCell BiologyResistance mutationVirologyReplication fidelityVirusPost-replicative repair030104 developmental biologyViral replicationViral evolutionMutationVirusesMutation (genetic algorithm)Dynamic mutationMolecular MedicineHyper-mutationCellular and Molecular Life Sciences
researchProduct