Search results for "VORTICES"

showing 10 items of 45 documents

Turbulent Superfluid Profiles and Vortex Density Waves in a Counterflow Channel

2012

In this paper we study the two-dimensional profiles of the superfluid component velocity and the quantized vortex-points density in a counterflow channel where the influence of the walls cannot be neglected. The numerical results obtained show the presence of vortex density waves in the channel, as shown in a recent paper by means of the one-fluid model.

PhysicsPartial differential equationCondensed matter physicsTurbulenceApplied MathematicsQuantum vortexQuantized vorticesVortex wavesMechanicsCounterflow channelVortexSuperfluidityQuantized vorticeOne-fluid modelSuperfluid heliumSettore MAT/07 - Fisica MatematicaSuperfluid helium-4Communication channel
researchProduct

Properties of dirty two-band superconductors with repulsive interband interaction: Normal modes, length scales, vortices, and magnetic response

2018

Disorder in two-band superconductors with repulsive interband interaction induces a frustrated competition between the phase-locking preferences of the various potential and kinetic terms. This frustrated interaction can result in the formation of an $s+is$ superconducting state, that breaks the time-reversal symmetry. In this paper we study the normal modes and their associated coherence lengths in such materials. We especially focus on the consequences of the soft modes stemming from the frustration and time-reversal-symmetry breakdown. We find that two-bands superconductors with such impurity-induced frustrated interactions display a rich spectrum of physical properties that are absent i…

Phase transitionsuprajohtavuusmedia_common.quotation_subjectmultiband superconductivityFOS: Physical sciencesFrustration02 engineering and technologySoft modes01 natural sciencessuprajohteetSuperconductivity (cond-mat.supr-con)Normal modeCondensed Matter::Superconductivityimpurities in superconductors0103 physical sciences010306 general physicsmedia_commonSuperconductivityPhysicsCondensed matter physicsta114Condensed Matter - Superconductivitysuperconductivityvortices in superconductors021001 nanoscience & nanotechnologySymmetry (physics)Coherence lengthMagnetic fieldCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPhysical Review B
researchProduct

Generation of programmable 3D optical vortex structures through devil’s vortex-lens arrays

2013

Different spatial distributions of optical vortices have been generated and characterized by implementing arrays of devil's vortex lenses in a reconfigurable spatial light modulator. A simple design procedure assigns the preferred position and topological charge value to each vortex in the structure, tuning the desired angular momentum. Distributions with charges and momenta of the opposite sign have been experimentally demonstrated. The angular velocity exhibited by the phase distribution around the focal plane has been visualized, showing an excellent agreement with the simulations. The practical limits of the method, with interest for applications involving particle transfer and manipula…

media_common.quotation_subjectDiffractive lensesDammann gratingslaw.inventionLiquid-crystal displayDiffractive lensOpticsExcellencelawElectrical and Electronic EngineeringAngular-momentumEngineering (miscellaneous)Diffractive opticsmedia_commonOptical vorticesPhysicsbusiness.industryVorticesQuantum information processingAtomic and Molecular Physics and OpticsVortexLens (optics)Zone platesFISICA APLICADAbusinessOptical vortexApplied Optics
researchProduct

Three-dimensional skyrmions in spin-2 Bose–Einstein condensates

2017

We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose-Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the versatile symmetries of the corresponding order parameters. We show how these structures can be created in existing experimental setups and study their temporal evolution and lifetime by numerically solving the three-dimensional Gross-Pitaevskii equations for realistic parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be imprinted…

spinor condensateSUPERFLUID HE-3Angular momentumSYMMETRYFOS: Physical sciencesGeneral Physics and AstronomyBose-Einstein condensation114 Physical sciences01 natural sciencesInstability010305 fluids & plasmaslaw.inventionPHASESKNOTSlaw0103 physical sciencesField theory (psychology)magnetismikvanttifysiikka010306 general physicsVORTICESSpin-½Condensed Matter::Quantum GasesPhysicsBose–Einstein condensationBiaxial nematicCondensed matter physicsSkyrmionMONOPOLESCondensed Matter::Mesoscopic Systems and Quantum Hall EffectFIELD-THEORYSymmetry (physics)skyrmionQuantum Gases (cond-mat.quant-gas)Condensed Matter - Quantum GasesBose–Einstein condensateNew Journal of Physics
researchProduct

Vortex line density in plane Couette flow in superfluid helium

2009

quantum vortices coflow counterflowSettore MAT/07 - Fisica Matematica
researchProduct

Symmetry breaking and singularity structure in Bose-Einstein condensates

2012

We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity, and a Magnus force that introduces a torque about the axis of symmetry. For the analytical non-interacting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the tra…

PhysicsCondensed Matter::Quantum GasesFOS: Physical sciencesVorticesPattern Formation and Solitons (nlin.PS)Impulse (physics)Nonlinear Sciences - Pattern Formation and SolitonsAtomic and Molecular Physics and OpticsDynamicsNumerical integrationlaw.inventionVortexClassical mechanicsSingularitylawQuantum Gases (cond-mat.quant-gas)Quantum mechanicsWavesLinesGravitational singularitySymmetry breakingSuperconductorsCondensed Matter - Quantum GasesWave functionBose–Einstein condensate
researchProduct

Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component

2013

In this paper, the velocity profile of the normal component in the stationary flow of turbulent superfluid helium inside a cylindrical channel is determined, making use of a one-fluid model with internal variables derived from Extended Thermodynamics. In the hypothesis of null barycentric velocity of the fluid (the so-called counterflow situation) it is seen that, in the presence of a sufficiently high vortex length density, the velocity profile of the normal component becomes very flat in the central region of the channel. Thus, a central flat profile of the normal fluid does not necessarily imply that the flow of the normal component is turbulent.

PhysicsTurbulenceChézy formulaLiquid heliumApplied MathematicsGeneral MathematicsFlow (psychology)Normal componentGeneral Physics and AstronomyMechanicsNull (physics)Vortexlaw.inventionPhysics::Fluid DynamicsClassical mechanicslawTurbulent superfluid helium. Normal fluid profile. One-fluid model. Quantized vortices. Heat transfer.Settore MAT/07 - Fisica MatematicaSuperfluid helium-4Zeitschrift für angewandte Mathematik und Physik
researchProduct

Experimental verification of position-dependent angular-momentum selection rules for absorption of twisted light by a bound electron

2018

We analyze the multipole excitation of atoms with twisted light, i.e., by a vortex light field that carries orbital angular momentum. A single trapped $^{40}$Ca$^+$ ion serves as a localized and positioned probe of the exciting field. We drive the $S_{1/2} \to D_{5/2}$ transition and observe the relative strengths of different transitions, depending on the ion's transversal position with respect to the center of the vortex light field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel beam, a Bessel-Gauss and a Gauss-Laguerre mode. Analyzing experimental obtained transition amplitudes we find agreement with the theoretical predictions at a…

Angular momentumField (physics)Atomic Physics (physics.atom-ph)Ciencias FísicasGeneral Physics and AstronomyFOS: Physical sciencesOPTICAL ANGULAR MOMENTUM01 natural sciencesOPTICAL VORTICESPhysics - Atomic PhysicsRABI OSCILLATIONS010309 optics//purl.org/becyt/ford/1 [https]0103 physical sciences010306 general physicsION TRAPSÓpticaPhysicsQuantum Physics//purl.org/becyt/ford/1.3 [https]VortexBessel beamQUANTUM SELECTION RULESAtomic physicsMultipole expansionQuantum Physics (quant-ph)Optical vortexCIENCIAS NATURALES Y EXACTASLight fieldExcitationPhysics - OpticsOptics (physics.optics)
researchProduct

Twin axial vortices generated by Fibonacci lenses.

2013

Optical vortex beams, generated by Diffractive Optical Elements (DOEs), are capable of creating optical traps and other multifunctional micromanipulators for very specific tasks in the microscopic scale. Using the Fibonacci sequence, we have discovered a new family of DOEs that inherently behave as bifocal vortex lenses, and where the ratio of the two focal distances approaches the golden mean. The disctintive optical properties of these Fibonacci vortex lenses are experimentally demonstrated. We believe that the versatility and potential scalability of these lenses may allow for new applications in micro and nanophotonics.

Fresnel zoneFibonacci numberDevils vortex-lensesLightNanophotonicsPhysics::OpticsMicroscopic scaleOpticsLight beamScattering RadiationGolden ratioComputer SimulationDiffractive opticsLensesPhysicsOptical vorticesbusiness.industryFractal zone platesEquipment DesignModels TheoreticalAtomic and Molecular Physics and OpticsVortexEquipment Failure AnalysisRefractometryFISICA APLICADAComputer-Aided DesignbusinessOptical vortexDiffractionOptics express
researchProduct

Wave propagation in anisotropic turbulent superfluids

2013

In this work, a hydrodynamical model of Superfluid Turbulence previously formulated is applied to study how the presence of a non-isotropic turbulent vortex tangle modifies the propagation of waves. Two cases are considered: wave front parallel and orthogonal to the heat flux. Using a perturbation method, the first-order corrections due to the presence of the vortex tangle to the speeds and to the amplitudes of the first and second sound are determined. It is seen that the presence of the quantized vortices couples first and second sound, and the attenuation of second sound is proportional to the line density L if the wave propagates orthogonal to the heat flux, while it is proportional to …

WavefrontPhysicsAnisotropic superfluid turbulence Quantized vortices Wave propagation Second sound Perturbation method.TurbulenceWave propagationApplied MathematicsGeneral MathematicsAttenuationGeneral Physics and AstronomyMechanicsSuperfluidityAmplitudeClassical mechanicsHeat fluxSecond soundSettore MAT/07 - Fisica Matematica
researchProduct