Search results for "VS."

showing 10 items of 1506 documents

Depletion of Alloreactive Donor T Lymphocytes by CD95-Mediated Activation-Induced Cell Death Retains Antileukemic, Antiviral, and Immunoregulatory T …

2007

In allogeneic hematopoietic stem cell transplantation (AHSCT) graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect are closely but not invariably linked. Thus, harnessing donor lymphocyte mediated GVL immunity and separating it from GVHD is of particular interest. Based on results obtained in murine models we have explored the CD95-mediated activation-induced cell death (AICD) strategy to selectively deplete alloreactivity in human donor T lymphocytes in vitro. Following stimulation of CD3(+) T cells isolated from HLA-A* 0201-positive donors with HLA or minor histocompatibility antigen mismatched hematopoietic or nonhematopoietic cells in the presence of agonistic anti-CD…

AllodepletionLymphocyteApoptosisGraft vs Leukemia EffectHuman leukocyte antigenBiologyEpitopeLymphocyte DepletionImmune systemCell Line TumorMinor histocompatibility antigenmedicineCytotoxic T cellHumansTransplantation Homologousfas ReceptorTransplantationHematopoietic Stem Cell TransplantationFOXP3Hematologymedicine.anatomical_structureLymphocyte TransfusionImmunologyT cell depletionLymphocyte graft engineeringCD8Biology of Blood and Marrow Transplantation
researchProduct

Defects in yttrium aluminium perovskite and garnet crystals: atomistic study

2000

Native and impurity point defects in both yttrium aluminium perovskite (YAP) and garnet (YAG) crystals are studied in the framework of the pair-potential approximation coupled with the shell model description of the lattice ions. The calculated formation energies for native defects suggest that the antisite disorder is preferred over the Frenkel and Schottky-like disorder in both YAP and YAG. The calculated values of the distortion caused by the antisite YAl x in the lattice turn out to be in an excellent agreement with the EXAFS measurements. In non-stoichiometric compounds, the calculated reaction energies indicate that excess Y2 O3 or Al2 O3 is most likely to be accommodated by the forma…

Aluminium oxidesCrystallographyMaterials scienceExtended X-ray absorption fine structureImpurityYttrium aluminiumLattice (order)MineralogyGeneral Materials ScienceCondensed Matter PhysicsCrystallographic defectPerovskite (structure)IonJournal of Physics: Condensed Matter
researchProduct

Amatiermākslas kolektīvu pārvaldības sistēma

2021

Sistēmas mērķis ir uzglabāt informāciju par amatiermākslas kolektīva dalībniekiem, dejām un koncertiem, kas ļauj lietotājiem ērtā veidā pārvaldīt datus. Darbā ir dokumentēts sistēmas izstrādes process, ietverot tajā PPA, PPS, testēšanas dokumentācija. Sistēma tika realizēta ar Laravel 7.30.1 tīmekļa ietvaru, kas balstās uz PHP programmēšanas valodas. Datu bāze implementācijai izmantots MySQL datu bāzes pārvaldības sistēma.

Amatiermākslas kolektīvsDatorzinātneLaravelTīmekļa vietnePārvaldības sistēmaPHP
researchProduct

Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles

2014

To date, there is no example in the literature of free, nanometer-sized, organolead halide CH3NH3PbBr3 perovskites. We report here the preparation of 6 nm-sized nanoparticles of this type by a simple and fast method based on the use of an ammonium bromide with a medium-sized chain that keeps the nanoparticles dispersed in a wide range of organic solvents. These nanoparticles can be maintained stable in the solid state as well as in concentrated solutions for more than three months, without requiring a mesoporous material. This makes it possible to prepare homogeneous thin films of these nanoparticles by spin-coating on a quartz substrate. Both the colloidal solution and the thin film emit l…

Ammonium bromideInorganic chemistryNanoparticleHalideINGENIERÍAS Y TECNOLOGÍAS7. Clean energyBiochemistryCatalysischemistry.chemical_compoundColloidColloid and Surface ChemistryNanoparticle//purl.org/becyt/ford/2.10 [https]Thin filmFilmPerovskite (structure)NanotecnologíaColloidal DispersionGeneral ChemistryHybrid PerovskiteNano-materialeschemistryChemical engineering//purl.org/becyt/ford/2 [https]Mesoporous materialVisible spectrum
researchProduct

Amplified Spontaneous Emission Properties of Solution Processed CsPbBr3 Perovskite Thin Films

2017

Metal halide perovskites are currently emerging as highly promising optoelectronic materials. It has been recently demonstrated that fully inorganic solution processed CsPbBr3 perovskite thin films show good electroluminescence properties combined with high thermal stability. In this work, we investigate in details the amplified spontaneous emission (ASE) properties of CsPbBr3 perovskite thin films, as a function of the temperature and the trap density, modified by changing the CsBr-PbBr2 precursor concentration. ASE is observed in samples from both CsBr-rich solution (low trap density) and equimolar solution (higher trap density), up to about 150 K, with a minimum threshold of 26 and 29 mu…

Amplified spontaneous emissionMaterials scienceExcitonAnalytical chemistryHalide02 engineering and technologyPerovskites Amplified Spontaneous EmissionElectroluminescence010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMetalGeneral Energyvisual_artvisual_art.visual_art_mediumThermal stabilityPhysical and Theoretical ChemistryThin film0210 nano-technologyPerovskite (structure)The Journal of Physical Chemistry C
researchProduct

Mechanisms of Spontaneous and Amplified Spontaneous Emission in CH3NH3PbI3 Perovskite Thin Films Integrated in an Optical Waveguide

2020

In this paper, the physical mechanisms responsible for optical gain in ${\mathrm{CH}}_{3}{\mathrm{NH}}_{3}{\mathrm{Pb}\mathrm{I}}_{3}$ (MAPI) polycrystalline thin films are investigated experimentally and theoretically. Waveguide structures composed by a MAPI film embedded in between PMMA and silica layers are used as an efficient geometry to confine emitted light in MAPI films and minimize the energy threshold for amplified spontaneous emission (ASE). We show that photogenerated exciton density at the ASE threshold is as low as $(2.4\ensuremath{-}12)\ifmmode\times\else\texttimes\fi{}{10}^{16}\phantom{\rule{0.1em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}3}$, which is below the Mott transition den…

Amplified spontaneous emissionMaterials scienceExcitonPhysics::OpticsGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsWaveguide (optics)Mott transitionCondensed Matter::Materials Science0103 physical sciencesSpontaneous emissionThin film010306 general physics0210 nano-technologyEnergy (signal processing)Perovskite (structure)Physical Review Applied
researchProduct

Single-Exciton Amplified Spontaneous Emission in Thin Films of CsPbX3 (X = Br, I) Perovskite Nanocrystals

2019

CsPbX3 perovskite nanocrystals (PNCs) have emerged as an excellent material for stimulated emission purposes, with even more prospective applications than conventional colloidal quantum dots. However, a better understanding of the physical mechanisms responsible for amplified spontaneous emission (ASE) is required to achieve more ambitious targets (lasing under continuous wave optical or electrical excitation). Here, we establish the intrinsic mechanisms underlying ASE in PNCs of three different band gaps (CsPbBr3, CsPbBr1.5I1.5, and CsPbI3). Our characterization at cryogenic temperatures does not reveal any evidence of the biexciton mechanism in the formation of ASE. Instead, the measured …

Amplified spontaneous emissionMaterials sciencebusiness.industryExciton02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesperovskite solar cells0104 chemical sciencesNanocrystalnanocrystalsthin filmsOptoelectronicsGeneral Materials ScienceColloidal quantum dotsStimulated emissionPhysical and Theoretical ChemistryThin film0210 nano-technologybusinessperovskitePerovskite (structure)
researchProduct

Amplified Spontaneous Emission in Thin Films of CsPbX3 Perovskite Nanocrystals

2019

During the last years, Metal Halide Perovskites (MHPs) have attracted special attention as an efficient conversion films for photovoltaics, or excellent gain media to construct optical sources. In spite of the fact that most of the works have been focussed on CH 3 NH 3 PbX 3 (X=Cl, Br, I) polycrystalline thin films, MHP can be also synthesized as colloidal nanocrystals. In particular, caesium lead halide perovskite CsPbX 3 nanocrystals (NCs) revealed extraordinary properties for optoelectronics. With a high quantum yield of emission (>90%) at room temperature and linewidths less than 100 meV, CsPbX 3 NCs have demonstrated favourable characteristics for active photonics. Indeed, thin films o…

Amplified spontaneous emissionPhotoluminescenceMaterials sciencebusiness.industry02 engineering and technologyNanosecond010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesFemtosecondOptoelectronicsStimulated emissionThin filmPhotonics0210 nano-technologybusinessPerovskite (structure)2019 21st International Conference on Transparent Optical Networks (ICTON)
researchProduct

Amplified spontaneous emission in thin films of quasi-2D BA3MA3Pb5Br16 lead halide perovskites

2021

Quasi-2D (two-dimensional) hybrid perovskites are emerging as a new class of materials with high photoluminescence yield and improved stability compared to their three-dimensional (3D) counterparts. Nevertheless, despite their outstanding emission properties, few studies have been reported on amplified spontaneous emission (ASE) and a thorough understanding of the photophysics of these layered materials is still lacking. In this work, we investigate the ASE properties of multilayered quasi-2D BA3MA3Pb5Br16 films through the dependence of the photoluminescence on temperature and provide a novel insight into the emission processes of quasi-2D lead bromide perovskites. We demonstrate that the …

Amplified spontaneous emissionPhotoluminescenceMaterials sciencequasi-2D perovskite Amplified spontaneous emission PhotoluminescenceHalideLaserlaw.inventionChemical physicslawPhase (matter)General Materials ScienceThin filmAbsorption (electromagnetic radiation)MaterialsExcitation
researchProduct

Hydrothermal synthesis of nanostructured inorganic powders by a continuous process under supercritical conditions

2005

Abstract In this study, using a prototype of hydrothermal synthesis in subcritical and supercritical water working in a continuous way, nanometric ceramic precursors with perfectly defined composition are produced: spinel ferrites such as Fe2CoO4, TiO2 with anatase structure and also perovskite structures such as BaZrO3. The as-prepared powders are fully characterized by complementary experiments: X-ray diffraction, electron microscopies, EDX spectrometry, surface area measurement, etc. Thus, particles size, morphology, aggregation state, crystal structure, composition are investigated. Moreover, magnetic properties of the ferrites products are studied. The powders obtained are pure phases …

AnataseMaterials scienceSpinelMineralogyengineering.materialSupercritical fluidGrain sizeChemical engineeringvisual_artX-ray crystallographyMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumengineeringHydrothermal synthesisCeramicPerovskite (structure)Journal of the European Ceramic Society
researchProduct