Search results for "Vehicle-to-vehicle"
showing 6 items of 6 documents
Optimization of Vehicle-to-Vehicle Frontal Crash Model Based on Measured Data Using Genetic Algorithm
2017
In this paper, a mathematical model for vehicle-to-vehicle frontal crash is developed. The experimental data are taken from the National Highway Traffic Safety Administration. To model the crash scenario, the two vehicles are represented by two masses moving in opposite directions. The front structures of the vehicles are modeled by Kelvin elements, consisting of springs and dampers in parallel, and estimated as piecewise linear functions of displacements and velocities, respectively. To estimate and optimize the model parameters, a genetic algorithm approach is proposed. Finally, it is observed that the developed model can accurately reproduce the real kinematic results from the crash test…
The impact of fixed and moving scatterers on the statistics of MIMO vehicle-to-vehicle channels
2021
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Article also available from publisher: http://dx.doi.org/10.1109/VETECS.2009.5073879 In this paper, we study the impact of fixed and moving clusters of scatterers on the statistics of multiple- input multiple-output (MIMO) vehicle-to-vehicle (V2V) channels. Double-bounce scattering is assumed for fixed scatterers, while single-bounce scattering is considered fo…
Modeling of Vehicle-to-Vehicle Channels in the Presence of Moving Scatterers
2012
In this paper, we derive a vehicle-to-vehicle~(V2V) channel model assuming a typical propagation scenario in which the local scatterers move with random velocities in random directions. The complex channel gain of the proposed V2V channel model is provided. Subsequently, for different scatterer velocity distributions, the corresponding autocorrelation functions~(ACFs) are derived, illustrated, and compared with the classical ACF derived under the assumption of fixed scatterers. Furthermore, under specific conditions, highly accurate approximations for the ACFs are provided in closed form. Since the proposed V2V channel model covers several communication scenarios as special cases, including…
Correlation and Spectral Properties of Vehicle-to-Vehicle Channels in the Presence of Moving Scatterers
2013
This paper derives a vehicle-to-vehicle (V2V) channel model assuming a typical propagation scenario in which the local scatterers move with random velocities in random directions. The complex channel gain of the proposed V2V channel model is provided. Subsequently, for different scatterer velocity distributions, the corresponding autocorrelation function (ACF), power spectral density (PSD), and the Doppler spread of the channel are derived, shown, and confirmed by the available measurement data. It is shown that the Gaussian mixture (GM) and the exponential distribution can accurately describe the velocity distribution of relatively fast and slow moving scatterers, respectively. Since the p…
Modeling Efficient and Effective Communications in VANET through Population Protocols
2021
Vehicular Ad-hoc NETworks (VANETs) enable a countless set of next-generation applications thanks to the technological progress of the last decades. These applications rely on the assumption that a simple network of vehicles can be extended with more complex and powerful network infrastructure, in which several Road Side Units (RSUs) are employed to achieve application-specific goals. However, this assumption is not always satisfied as in many real-world scenarios it is unfeasible to have a conspicuous deployment of RSUs, due to both economic and environmental constraints. With the aim to overcome this limitation, in this paper we investigate how the only Vehicle-to-Vehicle (V2V) communicati…
Performance Analysis of Cooperative V2V and V2I Communications Under Correlated Fading
2019
Cooperative vehicular networks will play a vital role in the coming years to implement various intelligent transportation-related applications. Both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications will be needed to reliably disseminate information in a vehicular network. In this regard, a roadside unit (RSU) equipped with multiple antennas can improve the network capacity. While the traditional approaches assume antennas to experience independent fading, we consider a more practical uplink scenario where antennas at the RSU experience correlated fading. In particular, we evaluate the packet error probability for two renowned antenna correlation models, i.e., cons…