Search results for "Ventral"

showing 10 items of 180 documents

Segment-specific requirements for dorsoventral patterning genes during early brain development in Drosophila.

2006

An initial step in the development of the Drosophila central nervous system is the delamination of a stereotype population of neural stem cells (neuroblasts, NBs) from the neuroectoderm. Expression of the columnar genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) and muscle segment homeobox (msh) subdivides the truncal neuroectoderm(primordium of the ventral nerve cord) into a ventral, intermediate and dorsal longitudinal domain, and has been shown to play a key role in the formation and/or specification of corresponding NBs. In the procephalic neuroectoderm(pNE, primordium of the brain), expression of columnar genes is highly complex and dynamic, and th…

Nervous systemanimal structuresCentral nervous systemPopulationBiologyNeuroblastmedicineAnimalsDrosophila ProteinseducationMolecular BiologyIn Situ HybridizationBody PatterningHomeodomain Proteinseducation.field_of_studyNeuroectodermBrainGene Expression Regulation DevelopmentalAnatomyNeural stem cellCell biologymedicine.anatomical_structureDrosophila melanogasterVentral nerve cordembryonic structuresHomeoboxNeurogliaDevelopmental BiologyTranscription FactorsDevelopment (Cambridge, England)
researchProduct

Early steps in building the insect brain: neuroblast formation and segmental patterning in the developing brain of different insect species

2003

In insects, morphological, molecular and genetic studies have provided a detailed insight into the ontogenetic processes that shape the ventral nerve cord. On the other hand, owing to its complexity and less obvious segmental composition, the knowledge about the development of the brain is still fragmentary. A promising approach towards gaining insight into fundamental processes underlying brain development is the comparison of embryonic brain development among different insect species. However, so far such comparative analyses are scarce. In this review, we summarize and compare data on the early steps in brain formation in different hemi- and holometabolous insects. We show that basic asp…

Neuroblast proliferationmedia_common.quotation_subjectfungiGeneral MedicineInsectBiologyengrailedmedicine.anatomical_structureNeuroblastInsect ScienceVentral nerve cordMushroom bodiesmedicineNeuropilAntennal lobeNeuroscienceEcology Evolution Behavior and SystematicsDevelopmental Biologymedia_commonArthropod Structure & Development
researchProduct

The Embryonic Central Nervous System Lineages ofDrosophila melanogaster

1997

Abstract In Drosophila, central nervous system (CNS) formation starts with the delamination from the neuroectoderm of about 30 neuroblasts (NBs) per hemisegment. They give rise to approximately 350 neurons and 30 glial cells during embryonic development. Understanding the mechanisms leading to cell fate specification and differentiation in the CNS requires the identification of the NB lineages. The embryonic lineages derived from 17 NBs of the ventral part of the neuroectoderm have previously been described (Bossing et al., 1996). Here we present 13 lineages derived from the dorsal part of the neuroectoderm and we assign 12 of them to identified NBs. Together, the 13 lineages comprise appro…

NeuroectodermLineage (evolution)food and beveragesAnatomyCell BiologyBiologyCell fate determinationbiology.organism_classificationEmbryonic stem cellCell biologyNeuroblastnervous systemVentral nerve cordembryonic structuresMelanogasterGanglion mother cellMolecular BiologyDevelopmental BiologyDevelopmental Biology
researchProduct

Role of en and novel interactions between msh, ind, and vnd in dorsoventral patterning of the Drosophila brain and ventral nerve cord

2010

AbstractSubdivision of the neuroectoderm into discrete gene expression domains is essential for the correct specification of neural stem cells (neuroblasts) during central nervous system development. Here, we extend our knowledge on dorsoventral (DV) patterning of the Drosophila brain and uncover novel genetic interactions that control expression of the evolutionary conserved homeobox genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh). We show that cross-repression between Ind and Msh stabilizes the border between intermediate and dorsal tritocerebrum and deutocerebrum, and that both transcription factors are competent t…

Neuroectodermal regionalizationNervous systemengrailedEmbryo Nonmammaliananimal structuresCentral nervous systemDorsoventral (DV) patterningBiologyNeuroblastAnterior Horn CellsmedicineAnimalsDrosophila Proteinsmsh/MsxMolecular Biologyind/GsxBody PatterningHomeodomain ProteinsVentral nerve cord (VNC)GeneticsNeuroectodermBrainvnd/Nkx2Cell BiologyBrain developmentengrailedNeural stem cellCell biologymedicine.anatomical_structureVentral nerve cordHomeoboxDrosophilaTranscription FactorsStem cell specificationDevelopmental BiologyDevelopmental Biology
researchProduct

Competence of blastomeres for the expression of molecular tissue markers is acquired by diverse mechanisms in the embryo of Platynereis (Annelida)

1992

This paper is devoted to the role of cell divisions for the establishment of histospecificity in the embryo of the spiralian, Platynereis dumerilii (Annelida). We have incubated successive cleavage stages in cytochalasin B (CCB) and observed whether the cells thereafter were able to acquire the competence for expressing histospecific antigens of larval gland cells (labelled by the monoclonal antibody OI64) and of neural components of the ventral nerve cord (labelled by mAb OI7 or by testing acety1cholinesterase activity), respectively. Incubation in CCB results in permanent cleavage arrest, but does not necessarily interfere with biochemical differentiation of such markers. Synthesis of the…

NeurogenesisEmbryogenesisEmbryoCell fate determinationBiologybiology.organism_classificationCell biologyNeuroblastVentral nerve cordImmunologyGeneticsStem cellDevelopmental BiologyPlatynereisRoux's Archives of Developmental Biology
researchProduct

Normal Function of the mushroom body defect Gene of Drosophila Is Required for the Regulation of the Number and Proliferation of Neuroblasts

1994

In the developing central nervous system of Drosophila, proliferation follows a reproducible and well-described spatial and temporal pattern. This pattern involves a defined number and distribution of neural stem cells (neuroblasts), as well as a precisely regulated time course of division of these neuroblasts. We show that mutations in the mushroom body defect (mud) gene interfere with the regulation of this pattern in a rather specific manner. In the abdominal neuromeres a subset of neuroblasts prolongs the period of proliferation. Additional daughter cells persist into the imago. Similar defects are expressed in the anterior ventral nerve cord and in the lateral central brain region. In …

Neuronsanimal structuresCell divisionStem CellsfungiBrainCell CountCell BiologyAnatomyBiologyNeuromereNeural stem cellCell biologynervous systemNeuroblastVentral nerve cordMutationMushroom bodiesAnimalsDrosophilaStem cellMolecular BiologyGanglion mother cellCell DivisionDevelopmental BiologyDevelopmental Biology
researchProduct

Neuroblast formation and patterning during early brain development in Drosophila.

2004

The Drosophila embryo provides a useful model system to study the mechanisms that lead to pattern and cell diversity in the central nervous system (CNS). The Drosophila CNS, which encompasses the brain and the ventral nerve cord, develops from a bilaterally symmetrical neuroectoderm, which gives rise to neural stem cells, called neuroblasts. The structure of the embryonic ventral nerve cord is relatively simple, consisting of a sequence of repeated segmental units (neuromeres), and the mechanisms controlling the formation and specification of the neuroblasts that form these neuromeres are quite well understood. Owing to the much higher complexity and hidden segmental organization of the bra…

Neuronsanimal structuresNeuroectodermfungiCentral nervous systemBrainProneural genesCell DifferentiationAnatomyBiologyNeuromereGeneral Biochemistry Genetics and Molecular BiologyNeural stem cellmedicine.anatomical_structureNeuroblastVentral nerve cordVertebratesmedicineAnimalsDrosophilaGanglion mother cellNeuroscienceBody PatterningBioEssays : news and reviews in molecular, cellular and developmental biology
researchProduct

Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli

2007

Abstract Background Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The main projections of the olfactory bulb are directed to the olfactory cortex and olfactory amygdala (the anterior and posterolateral cortical amygdalae). The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja. Results Although the olfactory projections have been previously described in the literature, injection of dextran-amines into the rat main olfactory bulb was performed with …

Olfactory systemMaleBiologyAmygdalalcsh:RC321-571Rats Sprague-DawleyCellular and Molecular NeuroscienceChemical stimulimedicineAnimalslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryNeuronsOlfactory receptorGeneral NeuroscienceOlfactory tuberclelcsh:QP351-495Ventral striatumOlfactory PathwaysAmygdalaCorpus StriatumOlfactory bulbRatslcsh:Neurophysiology and neuropsychologymedicine.anatomical_structurenervous systemIslands of CallejaFemaleNeuroscienceResearch Article
researchProduct

Sexual pheromones and the evolution of the reward system of the brain: the chemosensory function of the amygdala.

2008

The amygdala of all tetrapod vertebrates receives direct projections from the main and accessory olfactory bulbs, and the strong similarities in the organization of these projections suggest that they have undergone a very conservative evolution. However, current ideas about the function of the amygdala do not pay sufficient attention to its chemosensory role, but only view it as the core of the emotional brain. In this study, we propose that both roles of the amygdala are intimately linked since the amygdala is actually involved in mediating emotional responses to chemical signals. The amygdala is the only structure in the brain receiving pheromonal information directly from the accessory …

Olfactory systemVomeronasal organolfactory tuberclevomeronasalAmygdalaModels BiologicalRewardNeural PathwaysmedicineAnimalsHumansOlfactory memorySex AttractantsGeneral NeuroscienceOlfactory tubercleAmygdalaolfactoryBiological EvolutionChemoreceptor CellsVentral tegmental areamedicine.anatomical_structureSex pheromoneIslands of CallejadopamineIslands of CallejaPsychologyNeuroscienceVentral tegmental areaBrain research bulletin
researchProduct

Serotonin–dopamine interaction: electrophysiological evidence

2008

In this review, the most relevant data regarding serotonin (5-hydroxytryptamine, 5-HT)/dopamine (DA) interaction in the brain, as studied by both in vivo and in vitro electrophysiological methods, are reported and discussed. The bulk of neuroanatomical data available clearly indicate that DA-containing neurons in the brain receive a prominent innervation from 5-HT originating in the raphe nuclei of the brainstem. Furthermore, this modulation seems to be reciprocal; DA neurons innervate the raphe nuclei and exert a tonic excitatory effect on them. Compelling electrophysiological data show that 5-HT can exert complex effects on the electrical activity of midbrain DA neurons mediated by the va…

Pars compactaSubstantia nigraBiologyVentral tegmental areaGlutamatergicmedicine.anatomical_structurenervous systemDopaminemedicineSerotoninRaphe nucleiNeuroscience5-HT receptormedicine.drug
researchProduct