Search results for "Ville"

showing 10 items of 286 documents

Multiplicity results for Sturm-Liouville boundary value problems

2009

Multiplicity results for Sturm-Liouville boundary value problems are obtained. Proofs are based on variational methods.

Partial differential equationSturm-Liouville problem variational methodsApplied MathematicsNumerical analysisMultiplicity resultsMathematical analysisSturm–Liouville theoryMixed boundary conditionMathematics::Spectral TheoryMathematical proofCritical point (mathematics)Computational MathematicsSettore MAT/05 - Analisi MatematicaBoundary value problemMathematics
researchProduct

The Fučík spectrum for nonlocal BVP with Sturm–Liouville boundary condition

2014

Boundary value problem of the form x''=-μx++λx-, αx(0)+(1-α)x'(0)=0, ∫01 x(s)ds=0 is considered, where μ,λ∈ R and α∈ [0,1]. The explicit formulas for the spectrum of this problem are given and the spectra for some α values are constructed. Special attention is paid to the spectrum behavior at the points close to the coordinate origin.

PhysicsFucík spectrumApplied MathematicsSturm–Liouville boundary conditionMathematical analysisSpectrum (functional analysis)lcsh:QA299.6-433Sturm–Liouville theorylcsh:AnalysisSpectral lineboundary value problemBoundary value problemAnalysisintegral conditionNonlinear Analysis: Modelling and Control
researchProduct

Irreversibility of the transport equations

1974

PhysicsLiouville equationSymmetry breakingMathematical physicsCollision operator
researchProduct

Unitary reduction of the Liouville equation relative to a two-level atom coupled to a bimodal lossy cavity

2002

The Liouville equation of a two-level atom coupled to a degenerate bimodal lossy cavity is unitarily and exactly reduced to two uncoupled Liouville equations. The first one describes a dissipative Jaynes-Cummings model and the other one a damped harmonic oscillator. Advantages related to the reduction method are discussed.

PhysicsQuantum PhysicsLiouville equationDegenerate energy levelsFOS: Physical sciencesGeneral Physics and AstronomyAtom (order theory)Mathematics::Spectral TheoryLossy compressionUnitary stateQuantum mechanicsDissipative systemQuantum Physics (quant-ph)Reduction (mathematics)Harmonic oscillatorPhysics Letters A
researchProduct

Ville Vallgrenin museo : museon suunnitteluun vaikuttaneet tekijät ja museolle annetut merkitykset 1920-luvulla

2011

Ville Vallgrenin museo, Porvoon museon erillinen osasto, avattiin toukokuussa 1925. Museossa oli esillä kuvanveistäjä Ville Vallgrenin veistoksia. Tutkimuksen tavoitteena on selvittää eri konteksteja, jotka ovat vaikuttaneet museon suunnitteluun 1920-luvulla, kuvanveisto ja museonäyttelyiden suunnittelu näistä tärkeimpinä. Lisäksi käsitellään museolle annettuja merkityksiä sen perustamisaikana.

Porvoon museokuvanveistomuseorakennuksetmuseotRoos EvertVallgren Ville1920-lukutaidemuseot
researchProduct

Le cycle de vie des motivations professionnelles en médecine de ville : une étude dans le champ de la prévention

2010

International audience

Prévention[ SHS.ECO ] Humanities and Social Sciences/Economies and financesMédecine de ville[SHS.ECO] Humanities and Social Sciences/Economics and Finance[SHS.ECO]Humanities and Social Sciences/Economics and FinanceComputingMilieux_MISCELLANEOUS
researchProduct

Symmetry for positive critical points of Caffarelli–Kohn–Nirenberg inequalities

2022

Abstract We consider positive critical points of Caffarelli–Kohn–Nirenberg inequalities and prove a Liouville type result which allows us to give a complete classification of the solutions in a certain range of parameters, providing a symmetry result for positive solutions. The governing operator is a weighted p -Laplace operator, which we consider for a general p ∈ ( 1 , d ) . For p = 2 , the symmetry breaking region for extremals of Caffarelli–Kohn–Nirenberg inequalities was completely characterized in Dolbeault et al. (2016). Our results extend this result to a general p and are optimal in some cases.

Pure mathematicsApplied MathematicsOperator (physics)Caffarelli–Kohn–Nirenberg inequalities Classification of solutions Liouville-type theorem Optimal constant Quasilinear anisotropic elliptic equationsMathematics::Analysis of PDEsType (model theory)Range (mathematics)Settore MAT/05 - Analisi MatematicaSymmetry breakingSymmetry (geometry)Nirenberg and Matthaei experimentLaplace operatorAnalysisMathematics
researchProduct

Uniqueness of positive solutions to some nonlinear Neumann problems

2017

Abstract Using the moving plane method, we obtain a Liouville type theorem for nonnegative solutions of the Neumann problem { div ( y a ∇ u ( x , y ) ) = 0 , x ∈ R n , y > 0 , lim y → 0 + ⁡ y a u y ( x , y ) = − f ( u ( x , 0 ) ) , x ∈ R n , under general nonlinearity assumptions on the function f : R → R for any constant a ∈ ( − 1 , 1 ) .

Pure mathematicsApplied Mathematicsta111010102 general mathematicsMathematical analysisNeumann problemmoving plane methodFunction (mathematics)Type (model theory)01 natural sciencesNonlinear systemLiouville type theorem0103 physical sciencespartial differential equationsNeumann boundary conditionMoving plane010307 mathematical physicsUniqueness0101 mathematicsConstant (mathematics)AnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Some Inclusion Theorems for Orlicz and Musielak-Orlicz Type Spaces

1995

where K is a homogeneous kernel and f belongs to some KSthe functional space. In these papers the estimates are taken with respect to the KSthe norm of the space. Recently in [2] we obtained analogous estimates for functions belonging to Orlicz or Musielak-Orlicz type spaces L ~, with respect to the canonical modular functional. These results enable us to say that, for example,

Pure mathematicsMusielak-Orlicz spacesApplied MathematicsNorm (mathematics)Mathematical analysisFunctional spaceBirnbaum–Orlicz spaceOrlicz spacesRiemann-Liouville fractional integralHomogeneous kernelOrlicz spaces; Musielak-Orlicz spaces; Riemann-Liouville fractional integral; homogeneous kernelshomogeneous kernelsMathematics
researchProduct

On fractional smoothness and Lp-approximation on the Wiener space

2015

Real interpolationBesov spacesStochastic analysis on a Gaussian spaceApproximation of stochastic integralsRiemann-Liouville operators
researchProduct