Search results for "Vis"

showing 10 items of 21379 documents

SrTiO3-doping effect on dielectric and ferroelectric behavior of Na0.5Bi0.5 TiO3 ceramics

2018

Lead-free (Na0.5Bi0.5)1-xSrxTiO3 ceramics (x = 0–0.04) were synthesized by a conventional mixed-oxide technique. The microstructure study showed a dense structure, in good agreement with that of ab...

010302 applied physicsMaterials scienceDoping02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesFerroelectricityElectronic Optical and Magnetic Materialsvisual_art0103 physical sciencesvisual_art.visual_art_mediumCeramicComposite material0210 nano-technologyFerroelectrics
researchProduct

Preparation and dielectric properties of (Na 0.5 K 0.5 )NbO 3 ceramics with ZnO and CdO addition

2019

The sintering conditions, phase structure, and electrical properties of the ZnO and CdO doped (Na0.5K0.5)NbO3 (NKN) ceramics were investigated and discussed. All the samples were prepared by a solid state reaction method. The addition of 1 wt% CdO and ZnO as a sintering aid increases the density and lowering the sintering temperature. XRD analysis indicated perovskite structure with monoclinic symmetry. The investigated samples are good quality, the grains are well shaped without a glassy phase. The results of dielectric measurements revealed, that the dielectric properties of NKN based ceramics are stable in the wide temperature range.

010302 applied physicsMaterials scienceDopingSintering02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssodium potassium niobateChemical engineeringControl and Systems Engineeringdielectric propertiesvisual_artPhase (matter)0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]CeramicElectrical and Electronic Engineering0210 nano-technologySolid state sinteringIntegrated Ferroelectrics
researchProduct

EPR in glass ceramics

2019

Abstract The development of novel materials requires a profound understanding of the relationship between a material's performance and its structural properties. Electron paramagnetic resonance (EPR) is a well-established technique for a direct detection and identification of paramagnetic defects in solids. This chapter provides an overview of the applicability of continuous wave EPR spectroscopy in the studies of glass ceramics focusing on transition metal (Mn2 +, Cu2 +, Cr3 +) and rare earth (Gd3 +, Eu2 +, Er3 +, Yb3 +) ion local structure analysis. EPR spectra features of the above-mentioned paramagnetic probes in glasses and glass ceramics are compared and discussed in detail. The chapt…

010302 applied physicsMaterials scienceGlass-ceramic02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpectral lineIonlaw.inventionParamagnetismTransition metallawvisual_art0103 physical sciencesvisual_art.visual_art_mediumContinuous wavePhysical chemistryCeramic0210 nano-technologyElectron paramagnetic resonance
researchProduct

Comparative Study on Micromechanical Properties of ZnO:Ga and ZnO:In Luminiscent Ceramics

2021

The research has been supported by the Project ERANET RUS_ST#2017-051(Latvia) and #18-52-76002 (Russia). The Institute of Solid State Physics, University of Latvia as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Framework, Program H2020-WIDESPREAD-01-2016-2017-Teaming Phase 2 under grant agreement No. 739508, project CAMART2.

010302 applied physicsMaterials scienceHot pressed ZnO ceramicsnanoindentation010308 nuclear & particles physicsPhysicsQC1-999microstructureGeneral Engineeringfracture modeGeneral Physics and Astronomyhot pressed zno ceramicsNanoindentationMicrostructure01 natural sciencesvisual_art0103 physical sciencesvisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]CeramicComposite material
researchProduct

Structural, microstructural and dielectric studies in multiferroic LaSrNiO4-δ prepared by mechanical milling method

2016

Abstract The solid solution LaSrNiO 4-δ has been successfully prepared by a rapid method combining mechanical milling and heat treatment. The structure and microstructure transformations were characterized by X-ray powder diffraction, scanning and transmission electron microscopy. The dielectric property was also investigated. After 10 h of milling and 8 h of heat treatment at 1300 °C, X-ray diffraction analysis revealed LaSrNiO 4-δ single phase, exhibiting tetragonal structure with space group of I4/mmm. This result was confirmed by using the ED pattern for sample using the [001] orientation. The corresponding lattice images show the compound to be well ordered, indicating the absence of s…

010302 applied physicsMaterials scienceMechanical EngineeringMetals and Alloys02 engineering and technologyDielectricAtmospheric temperature range021001 nanoscience & nanotechnologyMicrostructure01 natural sciencesCrystallographyTetragonal crystal systemMechanics of Materialsvisual_art0103 physical sciencesMaterials Chemistryvisual_art.visual_art_mediumCeramicCrystalliteComposite material0210 nano-technologyPowder diffractionSolid solutionJournal of Alloys and Compounds
researchProduct

Improve the dielectric properties of PrSrNi0.8Mn0.2O4 compounds by longer mechanical milling

2018

Abstract Structural and dielectric properties of PrSrNi 0.8 Mn 0.2 O 4 ceramics elaborated by a rapid method combining mechanical milling and heat treatment were studied for the first time. The raw materials are milled at different times ( t mil  =  0, 5, 10, 20 and 30 h) and annealed at 1300 °C for 8 h to produce a revealed PrSrNi 0.8 Mn 0.2 O 4 single phase, exhibiting tetragonal structure with space group I 4/ mmm . This result was confirmed by using the TEM/ED pattern for sample milled at 30 h using the [001] orientation. The corresponding lattice images show a well-ordered compound, indicating the absence of stacking faults and the growth of the crystallites. Giant dielectric response …

010302 applied physicsMaterials scienceMechanical EngineeringMetals and AlloysStacking02 engineering and technologyActivation energyDielectric021001 nanoscience & nanotechnology01 natural sciencesTetragonal crystal systemCrystallographyMechanics of MaterialsLattice (order)visual_art0103 physical sciencesMaterials Chemistryvisual_art.visual_art_mediumDielectric lossCeramicCrystalliteComposite material0210 nano-technologyJournal of Alloys and Compounds
researchProduct

Investigation of mechanical and electrical properties of Li doped sodium niobate ceramic system

2016

ABSTRACTThe Na0.96Li0.04NbO3 ceramic solid solution was prepared by means of a two-stage hot-pressing technology. The X-ray diffraction analysis showed the formation of a single perovskite phase with an orthorhombic symmetry in the investigated composition. The microstructure and EDS measurements were performed. They confirmed the high purity and the expected qualitative composition. A good homogeneity of the microstructures and a small degree of porosity were observed. The elastic modulus (the Young's modulus E, shear modulus G, and Poisson's ratio ν) of Na0.96Li0.04NbO3 were determined with the use of an ultrasonic method. The electrical properties of Na0.96Li0.04NbO3 ceramics were invest…

010302 applied physicsMaterials scienceModulusMineralogy02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectronic Optical and Magnetic MaterialsShear modulusControl and Systems Engineeringvisual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCeramicElectrical and Electronic EngineeringComposite material0210 nano-technologyPorosityElastic modulusSolid solutionIntegrated Ferroelectrics
researchProduct

B-Scan image analysis for position and shape defect definition in plates

2016

Definition of size, shape and location of defects into a mechanical component is of extreme importance in the manufacturing industry in general and particularly in high-tech applications, and in applications that can become dangerous due to the structural failure of mechanical components. In this paper, a laser-UT system has been used to define position and shape of internal defects in aluminum plates. An infrared pulsed laser is used to generate ultrasonic waves in a point of the plate and a CW laser interferometer is used as receiver to acquire the out-of-plane displacements due to the ultrasonic waves in another point of the plate. The method consists of acquiring a B-Scan map on which s…

010302 applied physicsMaterials scienceNDEbusiness.industryAcousticsCw laser01 natural sciencesMechanical componentsImage (mathematics)InterferometryVirtual imagePosition (vector)defect definitionLaser Ultrasonic0103 physical sciencesPoint (geometry)Computer visionUltrasonic sensorArtificial intelligencebusiness010301 acousticsB-scan image analysi
researchProduct

Nanoporous characterization of modified humidity-sensitive MgO-Al 2 O 3 ceramics by positron annihilation lifetime spectroscopy method

2019

The work was supported by the Ukrainian Ministry of Education and Science. H. Klym thanks Prof. O. Shpotyuk for the fruitful discussion.

010302 applied physicsMaterials scienceNanoporousHumidity02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCharacterization (materials science)Chemical engineeringvisual_art0103 physical sciencesvisual_art.visual_art_mediumCeramic0210 nano-technologySpectroscopyPositron annihilationIOP Conference Series: Materials Science and Engineering
researchProduct

Molecular dynamics simulations of nanometric metallic multilayers: Reactivity of the Ni-Al system

2011

The reactivity of a layered Ni-Al-Ni system is studied by means of molecular dynamics simulations, using an embedded-atom method type potential. The system, made of an fcc-Al layer embedded in fcc-Ni, is initially thermalized at the fixed temperature of 600 K. The early interdiffusion of Ni and Al at interfaces is followed by the massive diffusion of Ni in the Al layer and by the spontaneous phase formation of $B2$-NiAl. The solid-state reaction is associated with a rapid system heating, which further enhances the diffusion processes. For longer times, the system may partly lose some its $B2$-NiAl microstructure in favor of the formation of $L{1}_{2}$-${\mathrm{Ni}}_{3}\mathrm{Al}$. This st…

010302 applied physicsMaterials scienceNanotechnology02 engineering and technologyType (model theory)021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectronic Optical and Magnetic MaterialsMetalMolecular dynamicsChemical physicsvisual_artPhase (matter)0103 physical sciencesvisual_art.visual_art_medium[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Reactivity (chemistry)PACS: 64.70.Nd 02.70.Ns 68.35.bdDiffusion (business)0210 nano-technologyLayer (electronics)
researchProduct