Search results for "Vortex"
showing 10 items of 244 documents
Superfluid turbulence in rotating containers: Phenomenological description of the influence of the wall
2005
In this paper a previous equation for the evolution of vortex line density L in counterflow superfluid turbulence in rotating containers is generalized, in order to take into account the influence of the walls. This model incorporates the effects of counterflow velocity V and of angular velocity {omega} of the container, and introduces corrective terms depending on {delta}/d, {delta} being the intervortex spacing, of the order L{sup -1/2}, and d the diameter of the channel. The stability of the solutions for L, for several regimes of averaged counterflow velocity V and angular velocity {omega}, is analyzed. Our mathematical analysis reveals that qualitative consistency allows us to reduce t…
A topological charge selection rule for phase singularities
2009
We present a study of the dynamics and decay pattern of phase singularities due to the action of a system with a discrete rotational symmetry of finite order. A topological charge conservation rule is identified.
Extended thermodynamics of polymers and superfluids
2008
Abstract Polymer solutions and turbulent superfluids have in common the presence of a complex tangle of lines – macromolecules in the former, quantized vortex lines in the latter – which contribute to the internal friction and viscous pressure of the system and make them typical non-Newtonian fluids. Here we briefly review some recent studies on such tangles and their consequences on the dynamics and thermodynamics of the whole system, using the framework of extended irreversible thermodynamics. For polymer solutions, we deal with the coupling of diffusion and viscous pressure and its effects on the stability of the solution and shear-induced phase separation; for superfluids, we focus our …
A thermodynamical model of inhomogeneous superfluid turbulence
2007
In this paper we perform a thermodynamical derivation of a nonlinear hydrodynamical model of inhomogeneous superfluid turbulence. The theory chooses as fundamental fields the density, the velocity, the energy density, the heat flux and the averaged vortex line length per unit volume. The restrictions on the constitutive quantities are derived from the entropy principle, using the Liu method of Lagrange multipliers. The mathematical and physical consequences deduced by the theory are analyzed both in the linear and in the nonlinear regime. Field equations are written and the wave propagation is studied with the aim to describe the mutual interactions between the second sound and the vortex t…
Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component
2013
In this paper, the velocity profile of the normal component in the stationary flow of turbulent superfluid helium inside a cylindrical channel is determined, making use of a one-fluid model with internal variables derived from Extended Thermodynamics. In the hypothesis of null barycentric velocity of the fluid (the so-called counterflow situation) it is seen that, in the presence of a sufficiently high vortex length density, the velocity profile of the normal component becomes very flat in the central region of the channel. Thus, a central flat profile of the normal fluid does not necessarily imply that the flow of the normal component is turbulent.
Hydrodynamic equations of anisotropic, polarized and inhomogeneous superfluid vortex tangles
2008
We include the effects of anisotropy and polarization in the hydrodynamics of inhomogeneous vortex tangles, thus generalizing the well known Hall-Vinen-Bekarevich-Khalatnikov equations, which do not take them in consideration. These effects contribute to the mutual friction force ${\bf F}_{ns}$ between normal and superfluid components and to the vortex tension force $\rho_s{\bf T}$. These equations are complemented by an evolution equation for the vortex line density $L$, which takes into account these contributions. These equations are expected to be more suitable than the usual ones for rotating counterflows, or turbulence behind a cylinder, or turbulence produced by a grid of parallel th…
A mathematical model of counterflow superfluid turbulence describing heat waves and vortex-density waves
2008
The interaction between vortex density waves and high-frequency second sound in counterflow superfluid turbulence is examined, incorporating diffusive and elastic contributions of the vortex tangle. The analysis is based on a set of evolution equations for the energy density, the heat flux, the vortex line density, and the vortex flux, the latter being considered here as an independent variable, in contrast to previous works. The latter feature is crucial in the transition from diffusive to propagative behavior of vortex density perturbations, which is necessary to interpret the details of high-frequency second sound.
Waves on a vortex filament: exact solutions of dynamical equations
2014
In this paper we take into account the dynamical equations of a vortex filament in superfluid helium at finite temperature (1 K < T < 2.17 K) and at very low temperature, which is called Biot-Savart law. The last equation is also valid for a vortex tube in a frictionless, unbounded and incompressible fluid. Both the equations are approximated by the Local Induction Approximation (LIA) and Fukumoto's approximation. The obtained equations are then considered in the extrinsic frame of reference, where exact solutions (Kelvin waves) are shown. These waves are then compared one to each other in terms of their dispersion relations in the frictionless case. The same equations are then investigated…
Non-classical Velocity Statistics in Counterflow Quantum Turbulence
2014
In this work we analyse the statistical distribution of turbulent superfluid velocity components in a He II counterflow channel, via two-dimensional numerical simulations pre- sented in past studies. The Probability Density Functions (PDFs) of the superfluid velocity components are investigated at lengthscales smaller than the average intervortex spacing, for varying vortex densities and different wall-normal distances. The results obtained con- firm the non-classical signature of quantum turbulence already observed in past numerical studies.
Calculation of the wetting parameter from a cluster model in the framework of nanothermodynamics
2003
The critical wetting parameter ${\ensuremath{\omega}}_{c}$ determines the strength of interfacial fluctuations in critical wetting transitions. In this Brief Report, we calculate ${\ensuremath{\omega}}_{c}$ from considerations on critical liquid clusters inside a vapor phase. The starting point is a cluster model developed by Hill and Chamberlin in the framework of nanothermodynamics [Proc. Natl. Acad. Sci. USA 95, 12779 (1998)]. Our calculations yield results for ${\ensuremath{\omega}}_{c}$ between 0.52 and 1.00, depending on the degrees of freedom considered. The findings are in agreement with previous experimental results and give an idea of the universal dynamical behavior of the cluste…