Search results for "WASTEWATER"
showing 10 items of 718 documents
Electrochemical abatement of chloroethanes in water: Reduction, oxidation and combined processes
2010
An electrochemical route, based on the anodic oxidation to carbon dioxide coupled with the cathodic reduction to de-halogenated hydrocarbons, was proposed for the treatment of waters contaminated by chloroethanes. The electrochemical abatement of two model compounds, namely 1,2-dichloroethane and 1,1,2,2-tetrachloroethane, was carried out by cathodic reduction at silver, anodic oxidation at boron doped diamond (BDD) and combined processes. The anodic oxidation gives rise to a high abatement of the concentration of both these compounds and of COD. The reduction of 1,1,2,2-tetrachloroethane proceeds also with high abatement but with the formation of some halogenated intermediates and final pr…
Electrochemical treatment of paper mill wastewater by electro-Fenton process
2019
Abstract The electrochemical oxidation of organics in paper mill wastewater belonging to Halfa industries (Tunisia) was performed by galvanostatic electrolyses using electro-Fenton (EF) process. The effect of several operating parameters, such as applied current density, electrodes material, air pressure and the presence of sodium chloride (NaCl) was evaluated. In particular, carbon felt (CF), modified carbon felt (MCF) and gas diffusion electrode (GDE) were used as cathode while Ti/IrO2-Ta2O5 and Boron Doped Diamond (BDD) as anode. Total Organic Carbon (TOC) measure was chosen as reference parameter to assess the extent of the treatment. The experimental results show that, by adopting the …
Assisted reverse electrodialysis for CO2 electrochemical conversion and treatment of wastewater: A new approach towards more eco-friendly processes u…
2020
Abstract In this paper, the utilization of assisted reverse electrodialysis (A-RED), recently used for pre-desalination, is proposed as a general method to reduce the energy requirements of electrolysis processes and evaluated for two model processes: (i) the cathodic conversion of carbon dioxide to formic acid; (ii) the anodic treatment of water contaminated by organics. In A-RED, two solutions with different salt content and an external potential difference, applied in the direction of the natural salinity gradient, are both used to drive redox processes. It was shown, for the first time, that the cathodic conversion of CO2 to formic acid can be performed by both reverse electrodialysis (…
Molecular monitoring of inactivation efficiencies of bacteria during pulsed electric field treatment of clinical wastewater
2008
Aims: The applicability of an alternative wastewater disinfection concept based on the pulsed electric field (PEF) treatment is tested with molecular biology techniques using clinical wastewaters. Methods and Results: Hospital wastewater was treated with the PEF technology. The inactivation efficiencies of bacteria were successfully monitored with real-time polymerase chain reaction (PCR). As the differentiation between living and dead bacterial cells is important for the determination of the disinfection efficiency, propidium monoazide (PMA) was applied. PMA selectively penetrates cells with compromised membranes and intercalates into the DNA inhibiting a subsequent PCR amplification. Th…
Designing an AnMBR-based WWTP for energy recovery from urban wastewater: The role of primary settling and anaerobic digestion
2015
The main objective of this paper is to assess different treatment schemes for designing a submerged anaerobic membrane bioreactor (AnMBR) based WWTP. The economic impact of including a primary settling (PS) stage and further anaerobic digestion (AD) of the wasted sludge has been evaluated. The following operating scenarios were considered: sulphate-rich and low-sulphate urban wastewater (UWW) treatment at 15 and 30 ºC. To this aim, the optimum combination of design/operating parameters that resulted in minimum total cost (CAPEX plus OPEX) for the different schemes and scenarios was determined. The AnMBR design was based on both simulation and experimental results from an AnMBR plant featuri…
Anaerobic membrane bioreactors for resource recovery from municipal wastewater: a comprehensive review of recent advances
2021
[EN] In a paradigm shift towards a sustainable society based on the Circular Economy, wastewater treatments are rapidly evolving towards simultaneous recovery and reuse of clean water, renewable energy, and nutrients. This review examines recent advances (from 2016 to 2020) in the potential of anaerobic membrane bioreactors (AnMBRs) to serve as the core technology for municipal wastewater (MWW) resource recovery, focusing on the latest technological advances and economic and environmental innovation perspectives. The potentials and limitations of AnMBR for further full-scale application and new platforms to address these challenges are discussed, covering systems based on co-digestion, pre-…
Multicriteria performance analysis of an integrated urban wastewater system for energy management
2017
AbstractThe optimization and management of an integrated urban wastewater system is a complex problem involving many processes and variables. The possible control options are defined by several management strategies that may differently impact the economic, operational or environmental performance of the system. The present paper aims to contribute to the environmental and energy sustainability of urban wastewater systems by means of a multicriteria performance analysis. The paper begins with a complete analysis of the system performance in several fields of interest (energy, environment, quality of service, operation, economy and financial resources), and it highlights the management stren…
DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.
2011
This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communic…
A Graphical User Interface as a DSS Tool for GHG Emission Estimation from Water Resource Recovery Facilities
2017
A Grafical User Interface (GUI) for the greenhouse gas (GHG) emissions from WWTPs based on four models aimed at quantifying the gas emissions from the aerated tanks (i.e. CAS and MBR reactor), aerobic digesters, secondary clarifiers and anaerobic digesters have been englobed in a GUI in order to provide a valid decision support system (DSS) to the practitioners. The GUI allows to estimate such emissions for the different WWTP phases considered. The GUI has been developed on MATLAB platform and provides as output the GHG emissions in terms of CO2 and N2O fluxes.
Cost-effectiveness analysis of sewer mining versus centralized wastewater treatment: Case study of the Arga river basin, Spain
2015
ABSTRACT:In the context of the EU Water Framework Directive, a Cost-Effectiveness Analysis (CEA) was performed to compare centralized and decentralized wastewater treatment strategies aimed to improve the ecological status of a Spanish river. The implementation of several hybrid membrane bioreactors within the urban framework for sewer mining (SM) was compared with the more common wastewater treatment plant enlargement option. The assessment ranked 6 alternatives based on 12 potential scenarios, aimed at narrowing the uncertainty of the CEA. The cost analysis illustrated that SM is the most expensive option regarding both investment and operation and maintenance costs. However, the effectiv…