Search results for "WAVELENGTH"
showing 10 items of 741 documents
Photokinetic examination of (Z,E,E)-4,4′-distyrylazobenzene
1995
Abstract 4,4′-Distyrylazobenzenes demonstrate a photokinetic equilibrium and a superimposed thermal backward reaction in which the absorption coefficient of one of the partners in the equilibrium is principally unknown. Using the dependence of the photostationary state on the irradiation intensity, the photochemical quantum yields ϕ 1 A and ϕ 2 B were determined, as well as the thermal rate constant k , as a function of the irradiation and observation wavelengths. Experimental difficulties and the wavelength dependence of ϕ 1 A and ϕ 2 B are discussed.
Multispectral and autofluorescence RGB imaging for skin cancer diagnostics
2019
This paper presents the results of statistical clinical data, combining two diagnostic methods. A combination of two skin imaging methods – diffuse reflectance and autofluorescence – has been applied for skin cancer diagnostics. Autofluorescence (AF) and multispectral diffuse reflectance images were acquired by custom made prototype with 405 nm, 526 nm, 663 nm and 964 nm LEDs and RGB CMOS camera. Parameter p’ was calculated from diffuse reflectance images under green, red and infrared illumination, AF intensity (I’) was calculated from AF images exited at 405nm wavelength. Obtained results show that criterion p` > 1 gives possibility to discriminate melanomas and different kind of keratosis…
Tuning four-wave mixing through temperature in ethanol-filled photonic crystal fiber
2016
In this paper, continuous tuning of four-wave mixing bands in an ethanol-filled photonic crystal fiber is investigated. A wide tuning range of the parametric bands, from 745 nm to 920 nm (signal) and from 1260 nm to 1710 nm (idler), is achieved through the thermo-optic effect. This corresponds to a frequency tuning range higher than 2000 cm−1; such wide range can be particularly useful in applications that require broadband wavelength conversion, e.g., CARS microscopy. Numerical calculations are in good agreement with experimental measurements.
Determination of Aerosol Size Distributions from Spectral Attenuation Measurements
1971
An iteration method for the determination of size distributions of aerosols from spectral attenuation data, similar to the one previously published for clouds, is presented. The basis for this iteration is to consider the extinction efficiency factor of particles as a set of weighting functions covering the entire radius region of a distribution. The weighting functions were calculated exactly from the Mie theory. Aerosol distributions are shown derived from tests with analytical size distributions and also generated from measured aerosol extinction data in seven spectral channels from 0.4-microto 10-micro wavelength in continental aerosols. The influence of relative humidity on the complex…
Cylindrical metal-coated optical fibre devices for filters and sensors
1996
Novel fibre-optic components suitable for sensor applications and wavelength filters are reported. The devices consist of a tapered fibre whose uniform waist has been coated with a thin layer of gold. The operation principle is the resonant excitation of a surface plasma mode of the metal film.
Anthracene Fluorescence Quenching by a Tetrakis (Ketocarboxamide) Cavitand
2014
Quenching of both fluorescence lifetime and fluorescence intensity of anthracene was investigated in the presence of a newly derived tetrakis (ketocarboxamide) cavitand at various concentrations. Time-correlated single photon counting method was applied for the lifetime measurements. A clear correlation between the fluorescence lifetime of anthracene as a function of cavitand concentration in dimethylformamide solution was observed. The bimolecular collisional quenching constant was derived from the decrease of lifetime. Fluorescence intensity was measured in the emission wavelength region around 400 nm as a result of excitation at 280 nm. Effective quenching was observed in the presence of…
On chip shapeable optical tweezers
2013
International audience; Particles manipulation with optical forces is known as optical tweezing. While tweezing in free space with laser beams was established in the 1980s, integrating the optical tweezers on a chip is a challenging task. Recent experiments with plasmonic nanoantennas, microring resonators, and photonic crystal nanocavities have demonstrated optical trapping. However, the optical field of a tweezer made of a single microscopic resonator cannot be shaped. So far, this prevents from optically driven micromanipulations. Here we propose an alternative approach where the shape of the optical trap can be tuned by the wavelength in coupled nanobeam cavities. Using these shapeable …
Photoinduced Modifications of the Structure and Microhardness of Fullerite C60
2004
The wavelength dependence, temperature limits, time and depth evolution of the photoinduced hardening of C60 crystals in air have been investigated by microindentation and dislocation mobility methods. Two photopolymerized phases, which differ in the hardness and thermal stability, are found to appear. We suggest that formation of fullerene dimers (ie. C120) in pristine fullerite and growth of C120O phase in oxygenated fullerite via [2+2] photoaddition reaction is responsible for it. It has been found from depth distribution data of the hardness that the C120O phase is located in oxygen-contaminated subsurface layer of 0.8–1 μm and appears under illumination at 290–330 K.
Acousto-Optic Interaction for Accurate Two-Mode Optical Fibers Characterization
2016
Accurate characterization of two-mode fibers by acousto-optic interaction is reported. Difference of modal index, group delay, and dispersion between the guided modes is obtained. Properties of the vector modes comprising the LP11 mode are investigated.
Fast response vibration sensor based on Bragg gratings written in tapered core fibres
2007
Bragg gratings written in tapered core fibres permit a direct measure of mechanical vibrations with a time response better than 10 µs. The intrinsic properties of the sensors lead to a simple interrogation technique and wavelength multiplexing capacity. The sensor system is operated at 800 nm and is compact and low-cost.