Search results for "WAVELENGTH"

showing 10 items of 741 documents

Extremely efficient evaluation of chromatic dispersion in realistic photonic crystal fibers

2004

We present a fast and accurate procedure for the evaluation of chromatic dispersion in photonic crystal fibers. It combines an iterative Fourier technique to compute the propagation constant at any fixed wavelength and an analytical approach to calculate its derivatives.

Materials scienceMulti-mode optical fiberbusiness.industrySingle-mode optical fiberPhysics::OpticsMicrostructured optical fiberOpticsZero-dispersion wavelengthDispersion (optics)OptoelectronicsDispersion-shifted fiberbusinessPhotonic crystalPhotonic-crystal fiberFrontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing
researchProduct

Plasmonic Core–Satellite Assemblies as Highly Sensitive Refractive Index Sensors

2015

Highly sensitive and spectrally tunable plasmonic nanostructures are of great demand for applications such as SERS and parallel biosensing. However, there is a lack of such nanostructures for the midvisible spectral regions as most available chemically stable nanostructures offer high sensitivity in the red to far red spectrum. In this work, we report the assembly of highly sensitive nanoparticle structures using a hydroxylamine mediated core–satellite assembly of 20 nm gold nanoparticle satellites onto 60 nm spherical gold cores. The average number of satellites allows tuning the plasmon resonance wavelength from 543 to 575 nm. The core–satellite nanostructures are stable in pH ranges from…

Materials scienceNanostructurebusiness.industryNanoparticleNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCore (optical fiber)WavelengthGeneral EnergyOptoelectronicsPhysical and Theoretical ChemistrySurface plasmon resonance0210 nano-technologybusinessBiosensorRefractive indexPlasmonThe Journal of Physical Chemistry C
researchProduct

0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics

2012

We demonstrate Wavelength Division Multiplexed (WDM)-enabled transmission of 480Gb/s aggregate data traffic (12x40Gb/s) as well as high-quality 1x2 thermo-optic tuning in Dielectric-Loaded Surface Plasmon Polariton Waveguides (DLSPPWs). The WDM transmission characteristics have been verified through BER measurements by exploiting the heterointegration of a 60 mu m-long straight DLSPPW on a Silicon-on-Insulator waveguide platform, showing error-free performance for six out of the twelve channels. High-quality thermo-optic tuning has been achieved by utilizing Cycloaliphatic-Acrylate-Polymer as an efficient thermo-optic polymer loading employed in a dual-resonator DLSPPW switching structure, …

Materials scienceON-CHIP02 engineering and technology01 natural sciencesOptical switchlaw.invention010309 opticsOpticslawWavelength-division multiplexing0103 physical sciencesGOLDPlasmonSCALEExtinction ratiobusiness.industryPhotonic integrated circuitCOMPONENTSTemperatureOptical DevicesSignal Processing Computer-AssistedEquipment DesignSurface Plasmon Resonance021001 nanoscience & nanotechnologySurface plasmon polaritonAtomic and Molecular Physics and OpticsNETWORKSEquipment Failure AnalysisTransmission (telecommunications)TelecommunicationsPOLARITON WAVE-GUIDES0210 nano-technologybusinessWaveguide
researchProduct

Improved All-Fiber Acousto-Optic Tunable Bandpass Filter

2017

An all-fiber acousto-optic tunable bandpass filter based on a 1.185-mm long coreless core mode blocker is reported. Experimental results demonstrate a minimal insertion loss of 1.2 dB at the optical resonant wavelength of 1527.7 nm with 3-dB optical bandwidth of 0.83 nm. The optimization of the device takes into account the attenuation of the acoustic wave and leads to an asymmetric configuration in which the coupling section is shorter than the recoupling part. Under the effect of a standing flexural wave the device can be operated as a bandpass modulator. The device exhibits a maximum modulation depth of 28%, 4 dB of insertion loss and 0.97 nm of optical bandwidth at 4.774 MHz.

Materials scienceOptical fiber02 engineering and technology01 natural scienceslaw.invention010309 opticsAmplitude modulationOpticsBand-pass filterlaw0103 physical sciencesInsertion lossOptical fibersElectrical and Electronic EngineeringModulationbusiness.industryAttenuationBandwidth (signal processing)021001 nanoscience & nanotechnologyUNESCO::FÍSICA::Óptica ::Fibras ópticasAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsWavelengthAcoustic waves:FÍSICA::Óptica ::Fibras ópticas [UNESCO]ModulationCouplings0210 nano-technologybusinessOptical attenuatorsIEEE Photonics Technology Letters
researchProduct

All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications

2011

International audience; In this paper, we report all-optical regeneration of the state of polarization of a 40-Gbit/s return-to-zero telecommunication signal as well as its temporal intensity profile and average power thanks to an easy-to-implement, all-fibered device. In particular, we experimentally demonstrate that it is possible to obtain simultaneously polarization stabilization and intensity profile regeneration of a degraded light beam thanks to the combined effects of counterpropagating four-wave mixing, self-phase modulation and normal chromatic dispersion taking place in a single segment of optical fiber. All-optical regeneration is confirmed by means of polarization and bit-error…

Materials scienceOptical fiberNonlinear opticsOptical communicationPolarization-maintaining optical fiber02 engineering and technologyfibersoptical communications01 natural sciencesNonlinear optical deviceslaw.invention010309 opticsFour-wave mixing020210 optoelectronics & photonicsOpticslawWavelength-division multiplexing0103 physical sciences0202 electrical engineering electronic engineering information engineeringSelf-phase modulationOptical processing devices[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNonlinear opticsAtomic and Molecular Physics and OpticsOptoelectronicsfour-wave mixingbusinessPhotonic-crystal fiber
researchProduct

Group birefringence cancellation in highly birefringent photonic crystal fibre at telecommunication wavelengths

2010

International audience; The spectral dependence of the group modal birefringence in a highly birefringent nonlinear photonic crystal fibre is studied both numerically and experimentally. The sign inversion and the cancellation of the group modal birefringence in the telecommunication window is demonstrated. Two simple experimental techniques are used to evaluate the wavelength of zero polarisation mode dispersion. The experimental results are in excellent agreement with numerical calculations based on vectorial beam propagation method simulations.

Materials scienceOptical fiberPhysics::Optics02 engineering and technology01 natural sciencesPhotonic crystal fibrelaw.invention010309 optics020210 optoelectronics & photonicsOpticsBeam propagation methodlaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringNonlinear photonic crystalElectrical and Electronic EngineeringPhotonic crystal[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Birefringencebusiness.industryWavelengthOptoelectronicsModal birefringencebusinessTelecommunications
researchProduct

Wavelength conversion from 1.3 µm to 1.5 µm in single-mode optical fibres using Raman-assisted three-wave mixing

2000

International audience; We theoretically analyse the achievement of wide-range all-optical wavelength conversion of a 1.31 µm signal to an idler wave in the 1.5 µm spectral region by Raman-assisted three-wave mixing in single-mode optical fibres. Raman-assisted three-wave mixing allows efficient conversion on a large frequency detuning bandwidth while alleviating the need for stringent phase-matching conditions.

Materials scienceOptical fiber[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonicbusiness.industryBandwidth (signal processing)Single-mode optical fiberPhysics::Optics02 engineering and technologyWavelength conversion01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringsymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicbusinessRaman spectroscopy
researchProduct

Fiber Characterization Using Whispering Gallery Modes(Invited)

2019

Fiber whispering gallery modes (WGMs) are surface waves that propagate azimuthally along the outer surface of the fiber cladding. Those waves that are in phase every turn give rise to narrow resonances defined by the resonant wavelength and a high Q factor. The actual values of the resonant wavelengths depend on the radius and the refractive index of the fiber cladding, enabling the development of several fiber characterization techniques. In addition, the typical high Q factor of these resonances (Q > 106) provides the characterization techniques with a low detection limit. Here, we report the development of a technique for measuring temperature profiles along the optical fiber, which enab…

Materials scienceOptical fiberbusiness.industryPhysics::OpticsCladding (fiber optics)law.inventionWavelengthOpticsSurface wavelawQ factorWhispering-gallery wavebusinessAnisotropyRefractive index2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL)
researchProduct

Generation of supercontinuum in erbium-doped microstructured optical fibers

2009

We present experimental results on supercontinuum (SC) generation in Er-doped microstructured optical fibers (MOF) pumped with nanosecond pulses at 1064 nm. The Er doping increases the effective nonlinear refractive index [1]. As a result, nonlinear interactions are enhanced and broad supercontinuum spectra are generated with relatively low pump power. Supercontinuum spectra generated in two fibers with the zero dispersion wavelengths (ZDW) close to the pump wavelength are presented. The first MOF is an endlessly singlemode fiber with normal dispersion at the pump wavelength, while the second fiber is a large air-filling fraction MOF with anomalous dispersion at 1064 nm.

Materials scienceOptical fiberbusiness.industrySingle-mode optical fiberPhysics::Opticschemistry.chemical_elementlaw.inventionSupercontinuumOptical pumpingErbiumZero-dispersion wavelengthOpticschemistrylawDispersion (optics)OptoelectronicsFiberbusinessCLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference
researchProduct

Fiber-pigtailed temperature sensors based on dielectric-loaded plasmonic waveguide-ring resonators.

2012

We demonstrate optical fiber-pigtailed temperature sensors based on dielectric-loaded surface plasmon-polariton waveguide-ring resonators (DLSPP-WRRs), whose transmission depends on the ambient temperature. The DLSPP-WRR-based temperature sensors represent polymer ridge waveguides (~1×1 µm(2) in cross section) forming 5-µm-radius rings coupled to straight waveguides fabricated by UV-lithography on a 50-nm-thick gold layer atop a 2.3-µm-thick CYTOP layer covering a Si wafer. A broadband light source is used to characterize the DLSPP-WRR wavelength-dependent transmission in the range of 1480-1600 nm and to select the DLSPP-WRR component for temperature sensing. In- and out-coupling single-mod…

Materials scienceOptical fiberbusiness.industrySurface plasmonTransducersEquipment DesignSurface Plasmon ResonanceAtomic and Molecular Physics and Opticslaw.inventionEquipment Failure AnalysisResonatorWavelengthOpticsFiber Bragg gratingFiber optic sensorlawThermographyWavelength-division multiplexingElectric ImpedanceOptoelectronicsFiber Optic TechnologyPhotonicsbusinessOptics express
researchProduct