Search results for "WRKY"
showing 5 items of 5 documents
Priming maritime pine megagametophytes during somatic embryogenesis improved plant adaptation to heat stress
2021
In the context of global climate change, forest tree research should be addressed to provide genotypes with increased resilience to high temperature events. These improved plants can be obtained by heat priming during somatic embryogenesis (SE), which would produce an epigenetic-mediated transgenerational memory. Thereby, we applied 37 °C or 50 °C to maritime pine (Pinus pinaster) megagametophytes and the obtained embryogenic masses went through the subsequent SE phases to produce plants that were further subjected to heat stress conditions. A putative transcription factor WRKY11 was upregulated in priming-derived embryonal masses, and also in the regenerated P37 and P50 plants, suggesting …
Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobac…
2007
International audience; Pathogen attack represents a major problem for viticulture and for agriculture in general. At present, the use of phytochemicals is more and more restrictive, and therefore it is becoming essential to control disease by having a thorough knowledge of resistance mechanisms. The present work focused on the trans-regulatory proteins potentially involved in the control of the plant defence response, the WRKY proteins. A full-length cDNA, designated VvWRKY1, was isolated from a grape berry library (Vitis vinifera L. cv. Cabernet Sauvignon). It encodes a polypeptide of 151 amino acids whose structure is characteristic of group IIc WRKY proteins. VvWRKY1 gene expression in …
Members of the WRKY gene family are upregulated in Canary palms attacked by Red Palm Weevil
2018
The Red Palm Weevil (RPW), Rhynchophorus ferrugineus, is one of the major pests affecting several palm species all around the world. The aim of this work was to identify palm genes that are responsive to RPW infestations as a valuable diagnostic tool to detect the insect attack. We have analysed a total of 15 genes that were divided in two subsets: (1) 7 genes previously linked with RPW attacks, but not involved in biotic stress responses, and (2) 8 genes encoding members of the WRKY family, a class of transcription factors well-known to be linked with both abiotic and biotic stress responses. The analysis was conducted on 4-year-old Canary palms comparing uninfested plants and infested pla…
Transcriptome profiling of citrus fruit response to huanglongbing disease.
2010
Huanglongbing (HLB) or "citrus greening" is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB- affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of phot…
Post-Translational Modifications of Nuclear Proteins in the Response of Plant Cells to Abiotic Stresses
2011
For a long time, in plant cells as in animal cells, the nucleus was only considered as the organelle in which fundamental mechanisms such as replication and transcription occurred. While strong efforts were deployed in order to identify important families of transcription factors such as MYB, WRKY or TGA families (Dubos et al., 2010; Rushton et al., 2010), a few attention was devoted to our lack of knowledge about their regulation in regard to the physiological conditions of the plant cells. Whereas the major importance of posttranslational modification of proteins is well established for several decades regarding cytosolic proteins, the last years have been characterized by the discovery t…