Search results for "Wasps"

showing 10 items of 71 documents

Multi-modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism.

2017

The pea aphid, Acyrthosiphon pisum, maintains extreme variation in resistance to its most common parasitoid wasp enemy, Aphidius ervi, which is sourced from two known mechanisms: protective bacterial symbionts, most commonly Hamiltonella defensa, or endogenously encoded defences. We have recently found that individual aphids may employ each defence individually, occasionally both defences together, or neither. In field populations, Hamiltonella-infected aphids are found at low to moderate frequencies and while less is known about the frequency of resistant genotypes, they show up less often than susceptible genotypes in field collections. To better understand these patterns, we sought to co…

0106 biological sciences0301 basic medicineGenotypeWaspsZoologyParasitismGenes InsectHamiltonella defensa010603 evolutionary biology01 natural sciencesParasitoid wasp03 medical and health sciencesEnterobacteriaceaeAnimalsEcology Evolution Behavior and SystematicsMutualism (biology)AphidbiologyHost Microbial InteractionsEcologyfood and beveragesbiology.organism_classificationFecundityAcyrthosiphon pisum030104 developmental biologyFertilityAnimal ecologyAphidsAnimal Science and ZoologyThe Journal of animal ecology
researchProduct

Influence of parasitoid-associated viral symbionts on plant–insect interactions and biological control

2021

International audience; Insect parasitoids have evolved symbiotic interactions with several viruses and thousands of parasitoid species have established mutualistic associations with polydnaviruses (PDVs). While PDVs have often been described as virulence factors allowing development of immature parasitoids inside their herbivore hosts, there is increasing awareness that PDVs can affect plant-insect interactions. We review recent literature showing that PDVs alter not only host physiology, but also feeding patterns and composition of herbivore's oral secretions. In turn PDV-induced changes in herbivore phenotype affect plant responses to herbivory with consequences ranging from differential…

0106 biological sciences0301 basic medicineInsecta[SDV]Life Sciences [q-bio]media_common.quotation_subjectWaspsBiological pest controlInsectParasitoids plant-insect-microbeBiology010603 evolutionary biology01 natural sciencesHost-Parasite InteractionsParasitoid03 medical and health sciencesAnimalsHerbivoryFeeding patternsPest Control BiologicalSymbiosisEcology Evolution Behavior and Systematicsmedia_commonTrophic level2. Zero hungerHerbivoreHost (biology)fungifood and beveragesPlantsbiology.organism_classificationPhenotype030104 developmental biologyPolydnaviridaeEvolutionary biologyInsect ScienceCurrent Opinion in Insect Science
researchProduct

Barcoding of parasitoid wasps (Braconidae and Chalcidoidea) associated with wild and cultivated olives in the Western Cape of South Africa

2019

Wild and cultivated olives harbor and share a diversity of insects, some of which are considered agricultural pests, such as the olive fruit fly. The assemblage of olive-associated parasitoids and seed wasps is rich and specialized in sub-Saharan Africa, with native species possibly coevolving with their hosts. Although historical entomological surveys reported on the diversity of olive wasp species in the Western Cape Province of South Africa, no comprehensive study has been performed in the region in the molecular era. In this study, a dual approach combining morphological and DNA-based methods was used for the identification of adult specimens reared from olive fruits. Four species of B…

0106 biological sciences0301 basic medicineOlive fruit flyWaspsParasitismmedicine.disease_cause010603 evolutionary biology01 natural sciencesDNA barcodingParasitoid03 medical and health sciencesSouth AfricaOleaBotanyInfestationGeneticsmedicineAnimalsDNA Barcoding TaxonomicMolecular BiologyPhylogenybiologyfungiGeneral MedicineBiodiversityDNAbiology.organism_classification030104 developmental biologyGenetic distanceTaxonomy (biology)BraconidaeBiotechnologyGenome
researchProduct

First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role.

2018

The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functio…

0106 biological sciences0301 basic medicinePhysiologyGlycosylasesWaspsVenomLaccasesHymenopteraInsectmelanization01 natural sciencesvirulence factorParasitoidTranscriptomePhysiological suppressionLaboratory of EntomologyArthropod Venomsmedia_commonLarvabiologyVirulence factorsPhenotypeNezara viridulalaccazesInsect ProteinsFemaleMelanizationmedia_common.quotation_subjectZoologycomplex mixturesHost-Parasite InteractionsHeteroptera03 medical and health sciencesglycosylasesExocrine GlandsMicroscopy Electron TransmissionAnimalsPeptidaseHost (biology)Laccasefungibiology.organism_classificationLaboratorium voor Entomologiephysiological suppression010602 entomology030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicatapeptidasesInsect ScienceEPS[SDE.BE]Environmental Sciences/Biodiversity and EcologyPeptidasesTranscriptomeGlycosylaseJournal of insect physiology
researchProduct

Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids

2018

Symbiotic relationships benefit organisms in utilization of new niches. In parasitoid wasps, symbiotic viruses and venom that are injected together with wasp eggs into the host caterpillar suppress immune responses of the host and enhance parasitoid survival. We found that the virus also has negative effects on offspring survival when placing these interactions in a community context. The virus and venom drive a chain of interactions that includes the herbivore and its food plant and attracts the hyperparasitoid enemies of the parasitoid. Our results shed new light on the importance of symbionts associated with their host in driving ecological interactions and highlight the intricacy of how…

0106 biological sciences0301 basic medicineWasps01 natural sciencesMultitrophic interactionParasitoidHerbivore-induced plant volatilesGene Expression Regulation PlantLaboratory of EntomologyTrophic levelPlant-mediatedLarvaMultidisciplinarybiologyPolydnavirusHerbivore-induced plant volatilePlantsBiological SciencesWaspPE&RCOrganische ChemieBiosystematiekInteraction networkinternationalLarvaSymbiosiButterfliesZoology010603 evolutionary biologyHost-Parasite Interactions03 medical and health sciencesMultitrophic interactionsSymbiosisButterflieAnimalsSymbiosisCaterpillarSalivaEcosystemHerbivoreParasitic waspVenomsHost (biology)AnimalOrganic ChemistryfungiPlantLaboratorium voor Entomologiebiology.organism_classificationVenom030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicataPolydnaviridaeHerbivoreBiosystematicsEPS
researchProduct

Interspecific competition/facilitation among insect parasitoids.

2015

Competition for limited resources is a widespread ecological interaction in animals. In the case of insect parasitoids, species can compete for host resources both at the adult stage as well as at the larval stage. Interspecific competition can play a role in sizing and shaping community structures. In addition of being relevant for basic ecological studies, understanding how interspecific competition between parasitoids affects pest suppression is important for biological control. In this opinion paper we review recent advances in the field of interspecific competition among parasitoids in a biological control perspective. We first discuss adult competition, highlighting which factors are …

0106 biological sciencesCompetitive BehaviorInsectamedia_common.quotation_subjectWaspsBiological pest controlInsectBiology010603 evolutionary biology01 natural sciencesInsect ControlIntraspecific competitionCompetition (biology)Host-Parasite InteractionsSpecies SpecificityAnimalsEcology Evolution Behavior and SystematicsEcosystemmedia_commonPopulation DensityHost (biology)EcologyfungiInterspecific competitionStorage effectEcology Evolution Behavior and Systematic010602 entomologySettore AGR/11 - Entomologia Generale E ApplicataInsect ScienceLarvaFacilitationCurrent opinion in insect science
researchProduct

Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity

2019

Although consumers often rely on chemical information to optimize their foraging strategies, it is poorly understood how top carnivores above the third trophic level find resources in heterogeneous environments. Hyperparasitoids are a common group of organisms in the fourth trophic level that lay their eggs in or on the body of other parasitoid hosts. Such top carnivores use herbivore-induced plant volatiles (HIPVs) to find caterpillars containing parasitoid host larvae. Hyperparasitoids forage in complex environments where hosts of different quality may be present alongside non-host parasitoid species, each of which can develop in multiple herbivore species. Because both the identity of th…

0106 biological sciencesFood ChainSDG 16 - PeaceForagingWaspsContext (language use)010603 evolutionary biology01 natural sciencesMultitrophic interactionParasitoidPlant-Microbe-Animal Interactions–Original ResearchHost-Parasite InteractionsHyperparasitoid foraging behaviorFourth trophic level organismsMultitrophic interactionsFourth trophic level organismButterflieAnimalsNon-host parasitoid specieHerbivoryLaboratory of EntomologyEcology Evolution Behavior and SystematicsTrophic levelPieris brassicaeHerbivorebiologyHost (biology)EcologyAnimal010604 marine biology & hydrobiologySDG 16 - Peace Justice and Strong InstitutionsnationalHost-Parasite Interactionbiology.organism_classificationCotesia glomerataPE&RCLaboratorium voor Entomologie/dk/atira/pure/sustainabledevelopmentgoals/peace_justice_and_strong_institutionsJustice and Strong InstitutionsPlant-based food webLarvaEPSButterfliesNon-host parasitoid speciesOecologia
researchProduct

Food load manipulation ability shapes flight morphology in females of central-place foraging Hymenoptera

2013

Received: 19 March 2013.- Accepted: 20 June 2013.- Published: 28 June 2013

0106 biological sciencesForagingWaspsBiodiversityHymenopteraBiologyDevelopment010603 evolutionary biology01 natural sciencesPredation03 medical and health sciencesWing loadingForagingCoevolutionEcology Evolution Behavior and Systematics030304 developmental biology0303 health sciencesNatural selectionEcologyResearchFlight Muscle RatioBeesbiology.organism_classificationLower wingWing LoadingAnimal Science and ZoologyFrontiers in Zoology
researchProduct

A review on introduced alien insect pests and their associated parasitoids on eucalyptus trees in Sicily

2018

A review is reported in the present paper on invasive alien insects introduced in Sicily on Eucalyptus trees, together with unpublished results from recent surveys. As to the latter ones, observations were conducted especially on Thaumastocoris peregrinus (Carpintero & Dellapé) (Hemiptera, Thaumastocoridae), the most recently introduced species. Overall, eight alien insect pests have been accidentally introduced in the island on Eucalyptus, belonging to the orders Hemiptera (Aphalaridae, 2 spp.; Thaumastocoridae, 1 sp.), Coleoptera (Cerambycidae, 2 spp.; Curculionidae, 1 sp.) and Hymenoptera (Eulophidae, 2 spp.). Two encyrtid parasitoids, Avetianella longoi Siscaro and Psyllaephagus bliteus…

0106 biological sciencesGall waspgall waspsSouth ItalyIntroduced speciesAlienHymenopteraAlien insect010603 evolutionary biology01 natural sciences: alien insectsBronze bugEucalypteucalypts: alien insects eucalypts South Italy psyllids gall wasps bronze bugEulophidaebiologyEcologypsyllidsbiology.organism_classificationHemipteraAphalaridae010602 entomologySettore AGR/11 - Entomologia Generale E ApplicataAgricultural and Biological Sciences (all)CurculionidaePsyllidGeneral Agricultural and Biological SciencesLonghorn beetle
researchProduct

Species composition and richness of aphid parasitoid wasps in cotton fields in northern China

2017

AbstractThe cotton aphid, Aphis gossypii (Hemiptera: Aphididae), is a serious pest of cotton across the globe, particularly in the cotton agroecosystems of northern China. Parasitic wasps are deemed to be important natural enemies of A. gossypii, but limited information exists about their species composition, richness and seasonal dynamics in northern China. In this study, we combine sampling over a broad geographical area with intensive field trials over the course of three cropping seasons to describe parasitoid-hyperparasitoid communities in cotton crops. We delineate a speciose complex of primary parasitoids and hyperparasitoids associated with A. gossypii. Over 90% of the primary paras…

0106 biological sciencesHemíptersChinaPopulationPopulation DynamicsWaspsBiological pest controllcsh:MedicineCotton010603 evolutionary biology01 natural sciencesControl biològic de plaguesArticleParasitoidHemipteraAphis gossypiiAnimalslcsh:ScienceeducationPlant DiseasesAphideducation.field_of_studyGossypiumMultidisciplinarybiologyBiological pest controlEcologylcsh:RCotóSpecies diversityAphididaeBiodiversitybiology.organism_classification010602 entomologyAgronomyAphidslcsh:QSpecies richnessSeasonsScientific Reports
researchProduct