Search results for "Wastewater treatment"
showing 10 items of 178 documents
Application of diffusion dialysis in separation of sulfuric acid and copper from electroplating wastewater
Electroplating industry creates large volumes of wastewater that contain acids and heavy metallic ions which are toxic but valuable. Diffusion dialysis (DD) can be used to separate acids from heavy metals. In this work, two single-cell DD modules equipped with Fumasep FAD membranes were used for the first time for the separation of sulfuric acid from copper. The first module consisted of a laboratory-scale DD unit operated in a batch configuration to study the effect of process parameters on the efficiency of sulfuric acid recovery. The latter one was a large-scale DD unit operated in a continuous configuration to simulate the process operation at the industrial scale. Results showed that F…
Diffusion dialysis for the treatment of H2SO4-CuSO4 solutions from electroplating plants: Ions membrane transport characterization and modelling
2021
Diffusion dialysis (DD) is proposed to separate and recover mineral acids and transition metals from electroplating industry process waters promoting a circular approach of resources recovery. In this work, a DD module with two anionic membranes (Fumasep FAD and Neosepta AFN) are used for the separation of H2SO4 from Cu2+ containing solutions. The membrane performances with sole H2SO4 solutions (0.2–2 M) and sole CuSO4 solutions (0.8–1.1 M Cu2+) and with mixtures of H2SO4 (0.6 M) and CuSO4 (0.2–1.1 M Cu2+) as feed are studied. H2SO4 recovery efficiency decreases as the concentration of acid increases. For H2SO4 solutions, the water drag flux from the retentate to the diffusate prevails agai…
Bipolar membrane reverse electrodialysis for the sustainable recovery of energy from pH gradients of industrial wastewater: Performance prediction by…
2021
Abstract The theoretical energy density extractable from acidic and alkaline solutions is higher than 20 kWh m−3 of single solution when mixing 1 M concentrated streams. Therefore, acidic and alkaline industrial wastewater have a huge potential for the recovery of energy. To this purpose, bipolar membrane reverse electrodialysis (BMRED) is an interesting, yet poorly studied technology for the conversion of the mixing entropy of solutions at different pH into electricity. Although it shows promising performance, only few works have been presented in the literature so far, and no comprehensive models have been developed yet. This work presents a mathematical multi-scale model based on a semi-…
Electrochemical treatment of wastewater containing NaCl. Methods to increase the removal of organic pollutants and minimize the formation of toxic by…
In many cases, wastewater can contain both organic pollutants and NaCl. Electrochemical methods allow to treat very effectively organic pollutants in the presence of NaCl. However, the utilization on an applicative scale of this route is limited by the fact that usually the high removals of organics is coupled with the generation of significant amounts of chlorinated by-products. The role of several operative parameters on the performances of the process was systematically evaluated using phenol as a model organic pollutant. It was shown that the removal of phenol and TOC and the generation of many by-products including chlorophenols, chloroacetic acids, chlorate and perchlorate dramaticall…
Effect of the air pressure on electro-Fenton process
2019
Electro-Fenton process is considered a very promising tool for the treatment of waste waters contaminated by organic pollutants refractant or toxic for microorganisms used in biological processes [1-6]. In these processes H2O2 is continuously supplied to an acidic aqueous solution contained in an electrolytic cell from the two-electron reduction of oxygen gas, directly injected as pure gas or bubbled air. Due to the poor solubility of O2 in aqueous solutions, two dimensional cheap graphite or carbon felt electrodes give quite slow generation of H2O2, thus resulting in a slow abatement of organics. In this context, we report here a series of studies [7-9] on the effect of air pressure on the…
A plant-wide wastewater treatment plant model for carbon and energy footprint: Model application and scenario analysis
2019
Abstract A new model for accounting carbon and energy footprint of wastewater treatment plants (WWTPs) is proposed. The model quantifies direct and indirect greenhouse gas (GHG) emissions related to biological and physical processes of a WWTP. The model takes into account several innovative aspects with respect to already available literature models: i. kinetic/mass-balances; ii. nitrification as a two-step process; iii. nitrous oxide (N2O) formation during nitrification and denitrification both in dissolved and off-gas forms. A full-scale application has been performed by adopting the case study of a real WWTP. A scenario analysis was performed to quantify the influence of: composition of …
Carbon Nanomaterial Doped Ionic Liquid Gels for the Removal of Pharmaceutically Active Compounds from Water.
2019
Due to large drug consumption, pharmaceutically active compounds (PhACs) can be found as water contaminants. The removal of PhACs is a significant issue, as they can easily overtake traditional purification methods. Because of their surface properties, carbon nanomaterials are among the most efficient materials able to adsorb PhACs. However, their limitation is their recovery after use and their possible leakage into the aquatic system. Consequently, new hybrid supramolecular ionic liquid gels (HILGs) have been designed for the adsorption of some antibiotic drugs (ciprofloxacin and nalidixic acid) from water. The chemical&ndash
Carbohydrate-supramolecular gels : adsorbents for chromium(VI) removal from wastewater.
2019
Abstract Hypothesis To overcome the contamination of water by heavy metals the adsorption of the pollutant on gel phases is an attractive solution since gels are inexpensive, potentially highly efficient and form a distinct phase while allowing diffusion of the contaminated water throughout the material. This work tests the chromium(VI) adsorbent capacity of new supramolecular gels for Chromium(VI) removal from wastewater. Experiments First hydrophobic imidazolium salts of carbohydrate anions were synthesised as new gelators. Subsequently, they were dissolved in a solvent by heating and, after cooling overnight, to give the formation of supramolecular gels. The properties of the resulting g…
Characterization of activated sludge settling properties with a sludge collapse-acceleration stage
2019
Abstract The sedimentability of the activated sludge can be affected by the presence of a large variety of coagulants and polymers from a previous physical-chemical process. In this paper, the activated sludge settling process in industrial wastewater treatment plants where the sludge does not settle in a conventional way is studied. The two observed constant hindered settling velocity stages and the instant the intermediate sludge acceleration period occurs are described. A variation of the Richardson and Zaki model is used to characterize the two stages of constant settling velocity. The concentration of suspended solids, where a sudden decrease of hindered settling velocity was observed,…
Separate and combined sewer systems: a long-term modelling approach
2009
Sewer systems convey mostly dry weather flow, coming from domestic and industrial sanitary sewage as well as infiltration flow, and stormwater due to meteoric precipitations. Traditionally, in urban drainage two types of sewer systems are adopted: separate and combined sewers. The former convey dry and wet weather flow separately into two different networks, while the latter convey dry and wet weather flow together. Which is the best solution in terms of cost-benefit analysis still remains a controversial subject. The present study was aimed at comparing the pollution loads discharged to receiving bodies by Wastewater Treatment Plant (WWTP) and Combined Sewer Overflow (CSO) for different ki…