Search results for "Wavelength"
showing 10 items of 741 documents
Columnar aerosol properties in a Northeastern Atlantic site (Plymouth, United Kingdom) by means of ground based skyradiometer data during years 2000-…
2012
Between 2000 and 2008, columnar optical and radiative properties were measured at the Plymouth Marine Laboratory (PML), UK (50° 21.95'N, 4° 8.85'W) using an automatic Prede POM01L sun-sky photometer. The database was analyzed for aerosol optical properties using the SKYRAD radiative inversion algorithm and calibrated using the in situ SKYIL calibration method. Retrievals include aerosol optical depth, ångström wavelength exponent, aerosol volume distribution, refractive index and single scattering albedo. The results show that the Plymouth site is characterized by low values of aerosol optical depth with low variability (0.18 ± 0.08 at 500 nm) and a mean annual ångström exponent of 1.03 ± 0…
Three-dimensional solar radiation effects on the actinic flux field in a biomass-burning plume
2003
[1] Three-dimensional (3-D) solar radiative transfer models describe radiative transfer under inhomogeneous atmospheric conditions more accurately than the commonly used one-dimensional (1-D) radiative transfer models that assume horizontal homogeneity of the atmosphere. Here results of 3-D radiative transfer simulations for a biomass-burning plume are presented and compared with local one-dimensional (l-1-D) simulations, i.e., 1-D simulations in every column of the model domain. The spatial distribution of the aerosol particles was derived from a 3-D atmospheric transport simulation. We studied the impact of 3-D radiative effects on the actinic flux within the plume center. The differences…
Depolarization�ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006
2009
Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9°N, –6.9°E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34…
In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006
2009
In situ measurements of optical and physical properties of mineral dust were performed at the outskirts of the Saharan Desert in the framework of the Saharan Mineral Dust Experiment part 1 (SAMUM-1). Goals of the field study were to achieve information on the extent and composition of the dust particle size distribution and the optical properties of dust at the ground. For the particle number size distribution, measured with a DMPS/APS, a size dependent dynamic shape factor was considered. The mean refractive index of the particles in this field study is 1.53–4.1 × 10 -3 i at 537 nm wavelength and 1.53–3.1 × 10 -3 i at 637 nm wavelength derived from measurements of scattering and absorption…
Approximation for the absorption coefficient of airborne atmospheric aerosol particles in terms of measurable bulk properties
1977
The absorption coefficient of airborne atmospheric aerosol particles can be approximated by where λ is the wavelength of radiation, n — ik is the mean complex refractive index, ρ the mean bulk density, and M / V k the mass of the particles per unit volume of air. This approximation gives good results at relative humidities between 0 and 0.95 for the wavelengths of radiation between 0.55 μm and 2.0 μm and between 9.25 μm and 12.0 μm. Basing on this approximation it is possible to determine the single scattering albedo of airborne atmospheric aerosol particles with known measuring techniques. DOI: 10.1111/j.2153-3490.1977.tb00711.x
A generalized single‐channel method for retrieving land surface temperature from remote sensing data
2003
[1] Many papers have developed algorithms to retrieve land surface temperature from at-sensor and land surface emissivity data. These algorithms have been specified for different thermal sensors on board satellites, i.e., the algorithm used for one thermal sensor (or a combination of thermal sensors) cannot be used for other thermal sensor. The main goal of this paper is to propose a generalized single-channel algorithm that only uses the total atmospheric water vapour content and the channel effective wavelength (assuming that emissivity is known), and can be applied to thermal sensors characterized with a FWHM (Full-Width Half-Maximum) of around 1 μm actually operative on board satellites…
Ground-based measured and calculated spectra of actinic flux density and downward UV irradiance in cloudless conditions and their sensitivity to aero…
2003
Ground-based spectral measurements of actinic flux density (300–660 nm wavelength) and downward UV irradiance (300–324 nm) under cloudless conditions have been compared with the results of one-dimensional radiative transfer calculations employing concurrent airborne vertical profile measurements of aerosol particle size distributions. Good agreement (within ±10%) between measured and calculated spectra was found. The remaining differences were explained by uncertainties inherent in the aerosol particle microphysical input data and the column ozone content. A respective sensitivity analysis of the calculated spectra, which was based on the observed variability of microphysical properties, ha…
Comparison of AERONET and SKYRAD4.2 inversion products retrieved from a Cimel CE318 sunphotometer
2012
SKYNET is an international research network of ground based sky – sunphotometers for the observation and monitoring of columnar aerosol properties. The algorithm developed by SKYNET is called SKYRAD.pack, and it is used on Prede instruments only. In this study, we have modified the SKYRAD.pack software in order to adapt it to Cimel sunphotometers. A one month database of Cimel data obtained at Burjassot (Valencia, Spain) has been processed with this program and the obtained inversion products have been compared with AERONET retrievals. In general, the differences found were consistent with the individual error assessments for both algorithms. Although the aerosol optical depth com…
Operational considerations to improve total ozone measurements with a Microtops II ozone monitor
2012
A Microtops II "ozone monitor" with UV channels centered at 305.5, 312.5, and 320 nm has been used routinely in six experimental campaigns carried out in several geographic locations and seasons, covering latitudes from 35 to 68° N during the last ten years (2001–2011). The total ozone content is retrieved by Microtops II by using different combinations (Channel I, 305.5/312.5 nm; Channel II, 312.5/320 nm; and Channel III, 305.5/312.5/320 nm) of the signals at the three ultraviolet wavelengths. The long-term performance of the total ozone content determination has been studied taking into account the sensitivities to the calibration, airmass, temperature and aerosols. When a calibration was…
Column-integrated aerosol optical properties in Sodankylä (Finland) during the Solar Induced Fluorescence Experiment (SIFLEX-2002).
2006
[1] A study has been made of the column aerosols using solar irradiance extinction measurements at ground level in a boreal region (Sodankyla, Finland) during spring 2002. The aerosol properties have been related to air mass origin. In general, the aerosol levels were observed to be very low, independent of the air mass origin, with an aerosol optical depth (AOD) value at 500 nm of less than 0.09 ± 0.03. Two characteristic patterns were observed depending on whether the air masses originated in the north and west or from the south and east. In the first case (north and west origins) the aerosol load was very small, with very low optical depths in the range 0.03 ± 0.02 to 0.09 ± 0.03 for 500…