Search results for "Weak solution"

showing 10 items of 52 documents

On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain

2021

Abstract We study the wave inequality with a Hardy potential ∂ t t u − Δ u + λ | x | 2 u ≥ | u | p in  ( 0 , ∞ ) × Ω , $$\begin{array}{} \displaystyle \partial_{tt}u-{\it\Delta} u+\frac{\lambda}{|x|^2}u\geq |u|^p\quad \mbox{in } (0,\infty)\times {\it\Omega}, \end{array}$$ where Ω is the exterior of the unit ball in ℝ N , N ≥ 2, p > 1, and λ ≥ − N − 2 2 2 $\begin{array}{} \displaystyle \left(\frac{N-2}{2}\right)^2 \end{array}$ , under the inhomogeneous boundary condition α ∂ u ∂ ν ( t , x ) + β u ( t , x ) ≥ w ( x ) on  ( 0 , ∞ ) × ∂ Ω , $$\begin{array}{} \displaystyle \alpha \frac{\partial u}{\partial \nu}(t,x)+\beta u(t,x)\geq w(x)\quad\mbox{on } (0,\infty)\times \partial{\it\Omega}, \e…

PhysicsMathematics::Functional Analysis35b3335b44QA299.6-433critical exponentMathematics::Complex Variables010102 general mathematicsMathematical analysisMathematics::Classical Analysis and ODEshardy potentialMathematics::Spectral Theoryexterior domain01 natural sciencesDomain (software engineering)010101 applied mathematics35l05Settore MAT/05 - Analisi Matematicawave inequalitiesglobal weak solutions0101 mathematicsCritical exponentAnalysisAdvances in Nonlinear Analysis
researchProduct

Large Time Behavior for Inhomogeneous Damped Wave Equations with Nonlinear Memory

2020

We investigate the large time behavior for the inhomogeneous damped wave equation with nonlinear memory ϕtt(t,&omega

PhysicsPhysics and Astronomy (miscellaneous)General MathematicsNonlinear memoryWeak solutionlcsh:Mathematics010102 general mathematicsnonexistence resultglobal weak solutionDamped wavenonlinear memorylcsh:QA1-93901 natural sciencesinhomogeneous term010101 applied mathematicsChemistry (miscellaneous)Settore MAT/05 - Analisi MatematicaComputer Science (miscellaneous)damped wave equation0101 mathematicsMathematical physicsSymmetry
researchProduct

On the Weak Solution of the Fluid-Structure Interaction Problem for Shear-Dependent Fluids

2016

In this paper the coupled fluid-structure interaction problem for incompressible non-Newtonian shear-dependent fluid flow in two-dimensional time-dependent domain is studied. One part of the domain boundary consists of an elastic wall. Its temporal evolution is governed by the generalized string equation with action of the fluid forces by means of the Neumann type boundary condition. The aim of this work is to present the limiting process for the auxiliary \((\kappa,\varepsilon,k)\)-problem. The weak solution of this auxiliary problem has been studied in our recent work (Hundertmark-Zauskova, Lukacova-Medvid​’ova, Necasova, On the existence of weak solution to the coupled fluid-structure in…

Physics::Fluid DynamicsDilatantPhysicsShear (geology)Weak solutionFluid–structure interactionMathematical analysisFluid dynamicsCompressibilityBoundary value problemNon-Newtonian fluid
researchProduct

Weak solution for Neumann (p,q)-Laplacian problem on Riemannian manifold

2019

We prove the existence of a nontrivial solution for a nonlinear (p, q)-Laplacian problem with Neumann boundary condition, on a non compact Riemannian manifold. The idea is to reduce the problem in variational form, which means to consider the critical points of the corresponding Euler-Lagrange functional in an Orlicz-Sobolev space. (C) 2019 Elsevier Inc. All rights reserved.

Pure mathematicsApplied MathematicsWeak solution010102 general mathematicsRiemannian manifoldSpace (mathematics)01 natural sciences010101 applied mathematicsNonlinear systemSettore MAT/05 - Analisi MatematicaNeumann boundary condition(p q)-Laplacian operator Riemannian manifold Weak solution0101 mathematicsLaplace operatorAnalysisMathematics
researchProduct

OBSTACLE PROBLEMS FOR DEGENERATE ELLIPTIC EQUATIONS WITH NONHOMOGENEOUS NONLINEAR BOUNDARY CONDITIONS

2008

In this paper we study the questions of existence and uniqueness of solutions for equations of type - div a(x,Du) + γ(u) ∋ ϕ, posed in an open bounded subset Ω of ℝN, with nonlinear boundary conditions of the form a(x,Du) · η + β(u) ∋ ψ. The nonlinear elliptic operator div a(x,Du) modeled on the p-Laplacian operator Δp(u) = div (|Du|p-2Du), with p > 1, γ and β maximal monotone graphs in ℝ2 such that 0 ∈ γ(0) ∩ β(0), [Formula: see text] and the data ϕ ∈ L1(Ω) and ψ ∈ L1(∂ Ω). Since D(γ) ≠ ℝ, we are dealing with obstacle problems. For this kind of problems the existence of weak solution, in the usual sense, fails to be true for nonhomogeneous boundary conditions, so a new concept of solut…

Pure mathematicsElliptic operatorMonotone polygonApplied MathematicsModeling and SimulationWeak solutionBounded functionObstacle problemMathematical analysisBoundary value problemUniquenessType (model theory)MathematicsMathematical Models and Methods in Applied Sciences
researchProduct

Landesman-Lazer type (p, q)-equations with Neumann condition

2020

We consider a Neumann problem driven by the (p, q)-Laplacian under the Landesman-Lazer type condition. Using the classical saddle point theorem and other classical results of the calculus of variations, we show that the problem has at least one nontrivial weak solution.

Pure mathematicsGeneral MathematicsWeak solution010102 general mathematicsNeumann problemcritical pointsaddle point theoremGeneral Physics and AstronomyType (model theory)01 natural sciences(pq)-LaplacianSaddle point theorem010101 applied mathematicsType conditionSettore MAT/05 - Analisi MatematicaNeumann boundary condition0101 mathematicsLandesman-Lazer type conditionMathematicsActa Mathematica Scientia
researchProduct

On the interior regularity of weak solutions to the 2-D incompressible Euler equations

2016

We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ for weak solutions in the energy space $$L_t^\infty L_x^2$$ , satisfying appropriate vorticity estimates. We also obtain impr…

Pure mathematicsIntegrable systemDimension (graph theory)Mathematics::Analysis of PDEsContext (language use)yhtälötSpace (mathematics)01 natural sciencessymbols.namesakeMathematics - Analysis of PDEs35Q31 (Primary) 76B03 35B65 35Q30 (Secondary)weak solutions0103 physical sciencesinterior regularityBoundary value problem0101 mathematicsMathematicsmatematiikkaApplied Mathematics010102 general mathematicsVorticityEuler equationsEuler equationssymbols010307 mathematical physicsAnalysisEnergy (signal processing)Calculus of Variations and Partial Differential Equations
researchProduct

Nonexistence of global weak solutions for a nonlinear Schrodinger equation in an exterior domain

2020

We study the large-time behavior of solutions to the nonlinear exterior problem L u ( t , x ) = &kappa

Pure mathematicsPhysics and Astronomy (miscellaneous)General MathematicsGlobal weak solution01 natural sciencesDomain (mathematical analysis)symbols.namesakeSettore MAT/05 - Analisi MatematicaComputer Science (miscellaneous)Neumann boundary conditionNonlinear Schrödinger equationBall (mathematics)0101 mathematicsNonlinear Schrödinger equationPhysicsComplex-valued functionOpen unitOperator (physics)lcsh:Mathematics010102 general mathematicsUnit normal vectorlcsh:QA1-939010101 applied mathematicsMathematics::LogicChemistry (miscellaneous)symbolsExterior domainNonhomegeneous Neumann boundary condition
researchProduct

Existence results for $L^1$ data of some quasi-linear parabolic problems with a quadratic gradient term and source

2002

In this paper we deal with a Cauchy–Dirichlet quasilinear parabolic problem containing a gradient lower order term; namely, ut - Δu + |u|2 γ-2u |∇u|2 = |u|p-2u. We prove that if p ≥ 1, γ ≥ ½ and p < 2 γ + 2, then there exists a global weak solution for all initial data in L1 (Ω). We also see that there exists a non-negative solution if the initial datum is non-negative.

Quadratic equationApplied MathematicsModeling and SimulationWeak solutionMathematical analysisParabolic problemGeodetic datumQuasi linearLower orderParabolic partial differential equationTerm (time)Mathematics
researchProduct

Steady-state radiation heat transfer problem

1996

In Section 8.2, we shall see that the steady-state radiative heat transfer problem can be transformed to minimization of a smooth nonquadratic functional J over a convex and closed subset of a Banach space V. To this end we firstly shortly recall some basic definitions concerning differentiability of J, because these sometimes differ in the literature.

Section (fiber bundle)Weak solutionHeat transferVariational inequalityBanach spaceRegular polygonApplied mathematicsDifferentiable functionDirectional derivativeMathematics
researchProduct