Search results for "Weak solution"
showing 10 items of 52 documents
On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain
2021
Abstract We study the wave inequality with a Hardy potential ∂ t t u − Δ u + λ | x | 2 u ≥ | u | p in ( 0 , ∞ ) × Ω , $$\begin{array}{} \displaystyle \partial_{tt}u-{\it\Delta} u+\frac{\lambda}{|x|^2}u\geq |u|^p\quad \mbox{in } (0,\infty)\times {\it\Omega}, \end{array}$$ where Ω is the exterior of the unit ball in ℝ N , N ≥ 2, p > 1, and λ ≥ − N − 2 2 2 $\begin{array}{} \displaystyle \left(\frac{N-2}{2}\right)^2 \end{array}$ , under the inhomogeneous boundary condition α ∂ u ∂ ν ( t , x ) + β u ( t , x ) ≥ w ( x ) on ( 0 , ∞ ) × ∂ Ω , $$\begin{array}{} \displaystyle \alpha \frac{\partial u}{\partial \nu}(t,x)+\beta u(t,x)\geq w(x)\quad\mbox{on } (0,\infty)\times \partial{\it\Omega}, \e…
Large Time Behavior for Inhomogeneous Damped Wave Equations with Nonlinear Memory
2020
We investigate the large time behavior for the inhomogeneous damped wave equation with nonlinear memory ϕtt(t,&omega
On the Weak Solution of the Fluid-Structure Interaction Problem for Shear-Dependent Fluids
2016
In this paper the coupled fluid-structure interaction problem for incompressible non-Newtonian shear-dependent fluid flow in two-dimensional time-dependent domain is studied. One part of the domain boundary consists of an elastic wall. Its temporal evolution is governed by the generalized string equation with action of the fluid forces by means of the Neumann type boundary condition. The aim of this work is to present the limiting process for the auxiliary \((\kappa,\varepsilon,k)\)-problem. The weak solution of this auxiliary problem has been studied in our recent work (Hundertmark-Zauskova, Lukacova-Medvid’ova, Necasova, On the existence of weak solution to the coupled fluid-structure in…
Weak solution for Neumann (p,q)-Laplacian problem on Riemannian manifold
2019
We prove the existence of a nontrivial solution for a nonlinear (p, q)-Laplacian problem with Neumann boundary condition, on a non compact Riemannian manifold. The idea is to reduce the problem in variational form, which means to consider the critical points of the corresponding Euler-Lagrange functional in an Orlicz-Sobolev space. (C) 2019 Elsevier Inc. All rights reserved.
OBSTACLE PROBLEMS FOR DEGENERATE ELLIPTIC EQUATIONS WITH NONHOMOGENEOUS NONLINEAR BOUNDARY CONDITIONS
2008
In this paper we study the questions of existence and uniqueness of solutions for equations of type - div a(x,Du) + γ(u) ∋ ϕ, posed in an open bounded subset Ω of ℝN, with nonlinear boundary conditions of the form a(x,Du) · η + β(u) ∋ ψ. The nonlinear elliptic operator div a(x,Du) modeled on the p-Laplacian operator Δp(u) = div (|Du|p-2Du), with p > 1, γ and β maximal monotone graphs in ℝ2 such that 0 ∈ γ(0) ∩ β(0), [Formula: see text] and the data ϕ ∈ L1(Ω) and ψ ∈ L1(∂ Ω). Since D(γ) ≠ ℝ, we are dealing with obstacle problems. For this kind of problems the existence of weak solution, in the usual sense, fails to be true for nonhomogeneous boundary conditions, so a new concept of solut…
Landesman-Lazer type (p, q)-equations with Neumann condition
2020
We consider a Neumann problem driven by the (p, q)-Laplacian under the Landesman-Lazer type condition. Using the classical saddle point theorem and other classical results of the calculus of variations, we show that the problem has at least one nontrivial weak solution.
On the interior regularity of weak solutions to the 2-D incompressible Euler equations
2016
We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ for weak solutions in the energy space $$L_t^\infty L_x^2$$ , satisfying appropriate vorticity estimates. We also obtain impr…
Nonexistence of global weak solutions for a nonlinear Schrodinger equation in an exterior domain
2020
We study the large-time behavior of solutions to the nonlinear exterior problem L u ( t , x ) = &kappa
Existence results for $L^1$ data of some quasi-linear parabolic problems with a quadratic gradient term and source
2002
In this paper we deal with a Cauchy–Dirichlet quasilinear parabolic problem containing a gradient lower order term; namely, ut - Δu + |u|2 γ-2u |∇u|2 = |u|p-2u. We prove that if p ≥ 1, γ ≥ ½ and p < 2 γ + 2, then there exists a global weak solution for all initial data in L1 (Ω). We also see that there exists a non-negative solution if the initial datum is non-negative.
Steady-state radiation heat transfer problem
1996
In Section 8.2, we shall see that the steady-state radiative heat transfer problem can be transformed to minimization of a smooth nonquadratic functional J over a convex and closed subset of a Banach space V. To this end we firstly shortly recall some basic definitions concerning differentiability of J, because these sometimes differ in the literature.