Search results for "Welding"
showing 10 items of 317 documents
Fatigue crack growth in 2024-T351 Friction Stir Welded Joints: longitudinal residual stresses and microstructural effects
2009
Abstract The role of longitudinal residual stress on propagation of fatigue cracks was examined in friction stir welds produced in 2024-T351 aluminum alloy. Fatigue crack growth rate was obtained through constant Δ K Iapp tests for notches at different distances from the weld centerline. Subsequently, crack growth was correlated to weld residual stress measured by the cut-compliance method. It was found that residual stresses correspond to low crack growth rates outside the weld zone during fatigue loading. Once in the weld zone, the crack growth was affected by microstructural and hardness changes. Furthermore, weld residual stresses were mechanically relieved and effects on crack propagat…
AA6082-T6 Friction Stir Welded Joints Fatigue Resistance: Influence of Process Parameters
2006
In the paper the results of a wide range of experiments on friction stir welding (FSW) of aluminium alloys are reported. In particular, the AA6082-T6 butt joints fatigue resistance was investigated by varying the most relevant process parameters. In addition, a revolutionary pitch was utilized in order to investigate the effects of the tool rotating speed and the tool feed rate. Observations of the fracture insurgence were developed for different levels of applied load.
Mode I failure modeling of friction stir welding joints
2008
This paper analyzes mechanical response by finite element method up to the decohesion failure in fracture mode I for joints of friction stir welding (FSW) of an aluminum alloy. It first describes experimental investigations on specimens with FSW embedded, subjected to uniform traction and local punch tests used to characterize local elastic and plastic material parameters. The heterogeneity of the mechanical properties induced by the FSW process is taken into account for the elastic-plastic finite element simulation. The growing damage and the opening failure of the welding zone are described by the adoption of a cohesive interface model with specific mechanical properties.
FSW of AA2139-T8 Butt joints for aeronautical applications
2011
The effect of process parameters on mechanical and microstructural properties of AA 2139 T8 joints produced by friction stir welding (FSW) was analysed by means of statistical tools. Three different parameters were taken into account: angular speed ( ω), welding speed ( va), and plunging depth ( p); each of them was varied on three levels. Forces and temperatures achieved during the welding were monitored and analysed for all joints. An accurate microstructural analysis was performed: the occurrence of some remarkable defects, typical of FSW, such as tunnel or lack of penetration, was related to actual process parameters adopted. The extension of each FSW characteristic zone was measured a…
Improved FE model for simulation of friction stir welding of different materials
2010
Abstract One of the most relevant aspects of friction stir welding is the possibility to weld different materials. In the present paper, the authors present an improved continuum finite element model for the simulation of friction stir welding processes aimed to obtain T joints, made of a stringer in AA7175-T73511 and of a skin in AA2024-T4. The model, taking into account the thermomechanical behaviours of the two different materials, is utilised to study the occurring material flow and residual stress state. Numerical results are compared with experimental observations: the model is able to predict the material flow, obtaining important information on the joint failure mode.
Solid state bonding mechanics in extrusion and FSW: Experimental tests and numerical analyses
2007
In the paper the authors compare the different solid state bonding mechanics for both the processes of hollow profiles extrusion and Friction Stir Welding (FSW), through the results obtained from a wide experimental campaign on AA6082-T6 aluminum alloys. Microstructure evaluation, tensile tests and micro-hardness measurements realized on specimens extracted by samples of the two processes are discussed also by means of the results obtained from coupled FEM simulation of the processes. ©2007 American Institute of Physics
Friction Stir Welding of 3D Industrial Parts: Joint Strength Analysis
2006
In the recent years Friction Stir Welding (FSW) has become an important joining technique since it allows to weld light weight alloys rather difficult to be welded or even “un-weldable” with the classic fusion welding operations. In the paper the authors present the application of the FSW process to the joining of 3D complex shapes typical of the industrial environment. In particular the research was aimed to highlight the joint mechanical strength at the varying of the 3D geometry of the welding line.Copyright © 2006 by ASME
Microstructural Changes Determining Joint Strength in Friction Stir Welding of Aluminium Alloys
2005
In the paper the results of a wide experimental activity on friction stir welding (FSW) of aluminum alloys are reported. In particular the butt joints of two different materials, namely AA1050-O and AA6082-T6 were considered. Grains dimensions and precipitates density were investigated both in the parent materials and after the welding processes. Furthermore post-welding heat treatments effects on the joint strength were studied.
Thermal Characterization of Friction Stir Welded Butt Joints
2005
In the paper the thermal characterization of friction stir welding processes (FSW) of aluminium alloys is presented. In particular both embedded thermocouples and a thermography analysis were utilized in order to acquire the temperature vs. time curves in point of interests of the joints and the temperature distributions, respectively. Such kind of results are very important in order to investigate the material conditions during the FSW process.
On the influence of tool path in friction stir spot welding of aluminum alloys
2008
Abstract Friction stir spot welding (FSSW) has been proposed as an effective technology to spot weld the so-called “difficult to be welded” metal alloys. In the paper, a variation of the FSSW process has been considered. A tool path is given after the sinking phase nearby the initial penetration site; in this way a larger welding spot is obtained and more material is involved in the bonding process. The process mechanics of such modified FSSW process is highlighted and the joint strength undergoing tensile tests is considered at the varying both of the assigned tool path and of a few process parameters. Macro- and micro-analyses are made in order to analyze the local material microstructure…