Search results for "Welding"

showing 10 items of 317 documents

Fatigue crack growth in 2024-T351 Friction Stir Welded Joints: longitudinal residual stresses and microstructural effects

2009

Abstract The role of longitudinal residual stress on propagation of fatigue cracks was examined in friction stir welds produced in 2024-T351 aluminum alloy. Fatigue crack growth rate was obtained through constant Δ K Iapp tests for notches at different distances from the weld centerline. Subsequently, crack growth was correlated to weld residual stress measured by the cut-compliance method. It was found that residual stresses correspond to low crack growth rates outside the weld zone during fatigue loading. Once in the weld zone, the crack growth was affected by microstructural and hardness changes. Furthermore, weld residual stresses were mechanically relieved and effects on crack propagat…

Materials scienceMechanical EngineeringMetallurgytechnology industry and agricultureFracture mechanicsWeldingrespiratory systemParis' lawIndustrial and Manufacturing Engineeringlaw.inventionCrack closureMechanics of MaterialsResidual stresslawModeling and Simulationmental disordersFriction stir weldingGeneral Materials ScienceFriction weldingFriction stir welding Residual stress Crack growth Aluminum alloySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneStress concentration
researchProduct

AA6082-T6 Friction Stir Welded Joints Fatigue Resistance: Influence of Process Parameters

2006

In the paper the results of a wide range of experiments on friction stir welding (FSW) of aluminium alloys are reported. In particular, the AA6082-T6 butt joints fatigue resistance was investigated by varying the most relevant process parameters. In addition, a revolutionary pitch was utilized in order to investigate the effects of the tool rotating speed and the tool feed rate. Observations of the fracture insurgence were developed for different levels of applied load.

Materials scienceMechanical EngineeringProcess (computing)chemistry.chemical_elementWeldingfriction stir weldedIndustrial and Manufacturing Engineeringlaw.inventionFatigue resistancechemistryAluminiumlawButt jointFracture (geology)Friction stir weldingComposite materialSettore ING-IND/15 - Disegno E Metodi Dell'Ingegneria IndustrialeSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
researchProduct

Mode I failure modeling of friction stir welding joints

2008

This paper analyzes mechanical response by finite element method up to the decohesion failure in fracture mode I for joints of friction stir welding (FSW) of an aluminum alloy. It first describes experimental investigations on specimens with FSW embedded, subjected to uniform traction and local punch tests used to characterize local elastic and plastic material parameters. The heterogeneity of the mechanical properties induced by the FSW process is taken into account for the elastic-plastic finite element simulation. The growing damage and the opening failure of the welding zone are described by the adoption of a cohesive interface model with specific mechanical properties.

Materials scienceMechanical Engineeringmedicine.medical_treatmentMetallurgyAlloyMode (statistics)WeldingTraction (orthopedics)engineering.materialIndustrial and Manufacturing EngineeringFinite element methodComputer Science ApplicationsFinite element simulationlaw.inventionControl and Systems EngineeringlawFracture (geology)medicineengineeringFriction stir weldingComposite materialFSW Failure modellingSoftwareThe International Journal of Advanced Manufacturing Technology
researchProduct

FSW of AA2139-T8 Butt joints for aeronautical applications

2011

The effect of process parameters on mechanical and microstructural properties of AA 2139 T8 joints produced by friction stir welding (FSW) was analysed by means of statistical tools. Three different parameters were taken into account: angular speed ( ω), welding speed ( va), and plunging depth ( p); each of them was varied on three levels. Forces and temperatures achieved during the welding were monitored and analysed for all joints. An accurate microstructural analysis was performed: the occurrence of some remarkable defects, typical of FSW, such as tunnel or lack of penetration, was related to actual process parameters adopted. The extension of each FSW characteristic zone was measured a…

Materials scienceMechanical Engineeringmicrostructuredesign of experimentAngular velocityWeldingmechanical propertiesMicrostructureIndentation hardnessfriction stirweldinglaw.inventionanalysis of the variancelawvisual_artUltimate tensile strengthFSW butt joints microstructureAluminium alloyvisual_art.visual_art_mediumButt jointaluminium alloyFriction stir weldingGeneral Materials ScienceComposite materialSettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct

Improved FE model for simulation of friction stir welding of different materials

2010

Abstract One of the most relevant aspects of friction stir welding is the possibility to weld different materials. In the present paper, the authors present an improved continuum finite element model for the simulation of friction stir welding processes aimed to obtain T joints, made of a stringer in AA7175-T73511 and of a skin in AA2024-T4. The model, taking into account the thermomechanical behaviours of the two different materials, is utilised to study the occurring material flow and residual stress state. Numerical results are compared with experimental observations: the model is able to predict the material flow, obtaining important information on the joint failure mode.

Materials scienceMechanical engineeringWeldingCondensed Matter PhysicsFriction stir welding T joints Different materials FEMFinite element methodMaterial flowlaw.inventionStringerResidual stresslawFriction stir weldingGeneral Materials ScienceComposite materialSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneFailure mode and effects analysisJoint (geology)Science and Technology of Welding and Joining
researchProduct

Solid state bonding mechanics in extrusion and FSW: Experimental tests and numerical analyses

2007

In the paper the authors compare the different solid state bonding mechanics for both the processes of hollow profiles extrusion and Friction Stir Welding (FSW), through the results obtained from a wide experimental campaign on AA6082-T6 aluminum alloys. Microstructure evaluation, tensile tests and micro-hardness measurements realized on specimens extracted by samples of the two processes are discussed also by means of the results obtained from coupled FEM simulation of the processes. ©2007 American Institute of Physics

Materials scienceMetallurgyFRICTION STIR WELDINGSolid State BondingMechanicsWeldingEXTRUSIONMicrostructureIndentation hardnessFinite element methodlaw.inventionBONDINGlawUltimate tensile strengthFriction stir weldingExtrusionFEM MODELComposite materialSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneTensile testing
researchProduct

Friction Stir Welding of 3D Industrial Parts: Joint Strength Analysis

2006

In the recent years Friction Stir Welding (FSW) has become an important joining technique since it allows to weld light weight alloys rather difficult to be welded or even “un-weldable” with the classic fusion welding operations. In the paper the authors present the application of the FSW process to the joining of 3D complex shapes typical of the industrial environment. In particular the research was aimed to highlight the joint mechanical strength at the varying of the 3D geometry of the welding line.Copyright © 2006 by ASME

Materials scienceMetallurgyFriction Stir WeldingMechanical engineeringWeldingElectric resistance weldinglaw.inventionRobot weldingFusion weldinglawMechanical strengthFriction stir weldingFriction weldingJoint (geology)Settore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct

Microstructural Changes Determining Joint Strength in Friction Stir Welding of Aluminium Alloys

2005

In the paper the results of a wide experimental activity on friction stir welding (FSW) of aluminum alloys are reported. In particular the butt joints of two different materials, namely AA1050-O and AA6082-T6 were considered. Grains dimensions and precipitates density were investigated both in the parent materials and after the welding processes. Furthermore post-welding heat treatments effects on the joint strength were studied.

Materials scienceMetallurgyGeneral Engineeringchemistry.chemical_elementWeldingMicrostructurelaw.inventionchemistryAluminiumlawButt jointFriction stir weldingComposite materialJoint (geology)Advanced Materials Research
researchProduct

Thermal Characterization of Friction Stir Welded Butt Joints

2005

In the paper the thermal characterization of friction stir welding processes (FSW) of aluminium alloys is presented. In particular both embedded thermocouples and a thermography analysis were utilized in order to acquire the temperature vs. time curves in point of interests of the joints and the temperature distributions, respectively. Such kind of results are very important in order to investigate the material conditions during the FSW process.

Materials scienceMetallurgyGeneral Engineeringchemistry.chemical_elementWeldinglaw.inventionCharacterization (materials science)chemistryAluminiumThermocouplelawThermographyButt jointFriction stir weldingFriction weldingComposite materialAdvanced Materials Research
researchProduct

On the influence of tool path in friction stir spot welding of aluminum alloys

2008

Abstract Friction stir spot welding (FSSW) has been proposed as an effective technology to spot weld the so-called “difficult to be welded” metal alloys. In the paper, a variation of the FSSW process has been considered. A tool path is given after the sinking phase nearby the initial penetration site; in this way a larger welding spot is obtained and more material is involved in the bonding process. The process mechanics of such modified FSSW process is highlighted and the joint strength undergoing tensile tests is considered at the varying both of the assigned tool path and of a few process parameters. Macro- and micro-analyses are made in order to analyze the local material microstructure…

Materials scienceMetallurgyMetals and AlloysProcess (computing)Mechanical engineeringchemistry.chemical_elementWeldingMicrostructureIndustrial and Manufacturing EngineeringComputer Science Applicationslaw.inventionTool pathSpotchemistrylawAluminiumModeling and SimulationUltimate tensile strengthCeramics and CompositesWeldingMicrostructureSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneJoint (geology)Spot weldingJournal of Materials Processing Technology
researchProduct