Search results for "Welding"

showing 10 items of 317 documents

Dissimilar titanium/aluminum friction stir welding lap joints by experiments and numerical simulation

2016

Dissimilar lap joints were produced by friction stir welding (FSW) out of Ti6Al4V titanium alloy and AA2024 aluminum alloy sheets. The joints, welded with varying tool rotation and feed rate, were studied by analyzing the maximum shear strength, Vickers microhardness and optical observations. A dedicated numerical model, able to take into account the presence of the two different alloys, was used to highlight the effects of the process parameters on temperature distribution, strain distribution, and material flow. The combined analysis of experimental measurements and numerical predictions allowed explaining the effects of tool rotation and feed rate on the material flow. It was found that …

0209 industrial biotechnologyMaterials sciencePolymers and PlasticsAA2024Lap joint02 engineering and technologyWeldingRotationIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationlawShear strengthFriction stir weldingMechanics of MaterialComposite materialJoint (geology)Finite element method (FEM)Polymers and PlasticFriction stir welding (FSW)Mechanical EngineeringTi6Al4VTitanium alloy021001 nanoscience & nanotechnologyMaterial flowLap jointMechanics of Materials0210 nano-technology
researchProduct

Ultrasonic Welding of PBT-GF30 (70% Polybutylene Terephthalate + 30% Fiber Glass) and Expanded Polytetrafluoroethylene (e-PTFE)

2021

The ultrasonic welding of polymeric materials is one of the methods often used in practice. However, each couple of material subjected to ultrasonic welding is characterized by different values of technological parameters. Therefore, the main objective of the research presented in this paper is to optimize the parameters for the ultrasonic welding of two materials, namely PBT-GF30 (70% polybutylene terephthalate + 30% fiber glass) and expanded polytetrafluoroethylene (e-PTFE). In this sense, the research was carried out considering a plate-type part made of PBT-GF30, which had a thickness of 2.1 mm, and a membrane-type part made of e-PTFE, with a thickness of 0.3 mm. The condition imposed o…

0209 industrial biotechnologyMaterials sciencePolymers and PlasticsBar (music)PBT-GF30 (70% polybutylene terephthalate + 30% fiber glass)02 engineering and technologyExpanded polytetrafluoroethyleneWeldingArticleultrasonic weldinglaw.inventionlcsh:QD241-441chemistry.chemical_compound020901 industrial engineering & automationlcsh:Organic chemistrylawparameter optimizationComposite materialHolding timeUltrasonic weldingFiber glassGeneral Chemistry021001 nanoscience & nanotechnologyPolybutylene terephthalatechemistry0210 nano-technologyexpanded polytetrafluoroethylene (e-PTFE)Layer (electronics)Polymers
researchProduct

Effect of position and force tool control in friction stir welding of dissimilar aluminum-steel lap joints for automotive applications

2020

Widespread use of aluminum alloys for the fabrication of car body parts is conditional to the use of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Friction stir welding (FSW) is considered to be a reasonable solution to obtain sound aluminum-steel joints. In this context, this work studies the effects of tool position and force control in dissimilar friction stir welding of AA6061 aluminum alloy on DC05 low carbon steel in lap joint configuration, also assessing proper welding parameter settings. Naked eye and scanning electron microscopy (SEM) have been used to detect macroscopic and microscopic defects in joints, as well as t…

0209 industrial biotechnologyMaterials sciencePolymers and PlasticsCarbon steelAlloyContext (language use)02 engineering and technologyWeldingengineering.materialIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationAA6016 aluminum alloy0203 mechanical engineeringlawFriction stir weldingComposite materialJoint (geology)Tensile testingFriction stir welding (FSW)Mechanical EngineeringDissimilar materialWelding parametersDissimilar materialsAA6016 aluminum alloy; DC05 low carbon steel; Dissimilar materials; Friction stir welding (FSW); Welding parameters020303 mechanical engineering & transportsLap jointMechanics of MaterialsDC05 low carbon steelengineering
researchProduct

Direct laser welding of pure titanium to austenitic stainless steel

2018

Abstract Direct butt joining of pure titanium to 316L stainless steel with continuous Yb:YAG laser was performed with variation of the beam offset from joint line. Mechanical properties of samples were evaluated by tensile tests and three-point flexural tests. The fractured surfaces and cross sections of welds were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Tensile properties of welds were strongly determined by the beam offset from joint line and are well described by Weibull statistics. Ultimate tensile strength of 174 ± 69 MPa and ultimate flexural strength of 297 ± 48 MPa were obtained. Brittle fracture took place in…

0209 industrial biotechnologyMaterials scienceScanning electron microscopeEnergy-dispersive X-ray spectroscopyLaser beam weldingchemistry.chemical_element02 engineering and technologyengineering.material021001 nanoscience & nanotechnology020901 industrial engineering & automationFlexural strengthchemistryUltimate tensile strengthengineeringGeneral Earth and Planetary SciencesAustenitic stainless steelComposite material0210 nano-technologyBeam (structure)General Environmental ScienceTitaniumProcedia CIRP
researchProduct

Application of linear friction welding for joining ultrafine grained aluminium

2020

Abstract Ultrafine grained (UFG) materials are of great potential in industry due to their enhanced mechanical strength and other promising features, such as ability to superplastic deformation or excellent corrosion resistance. Nevertheless, one of the main limitations lies in their low thermal stability, which leads to excessive grain growth at elevated temperature. It influences mainly further processes performed at high temperature, such as joining. It causes detrimental problems during conventional fusion welding, as significant grain growth is observed and therefore the advantages as a result of small average grain size disappear. Therefore, the idea of applying solid state joining pr…

0209 industrial biotechnologyMaterials scienceStrategy and ManagementMetallurgySuperplasticity02 engineering and technologyWeldingManagement Science and Operations Research021001 nanoscience & nanotechnologyIndustrial and Manufacturing EngineeringGrain sizelaw.inventionGrain growthFusion welding020901 industrial engineering & automationSevere plastic deformationlawUltimate tensile strengthAluminiumFriction weldingUltrafine grained microstructureDeformation (engineering)0210 nano-technologyLinear friction weldingSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneJournal of Manufacturing Processes
researchProduct

Optimisation of refractory coatings realised with cored wire addition using a high-power diode laser

2005

Laser; Cladding; Refractory alloys; Factorial experiments; International audience; The objective or our research was to obtain refractory alloys using the high-power diode laser (HPDL) coating technique. After optimisation using factorial experiments, two different cladding regimes were clearly distinguished. It was also shown that a very narrow transition zone exists between the two regimes, and, inside this zone, clad layers having a satisfactory compromise between the response functions (surface aspect and cavity presence) were obtained. The main objective of our study, namely, the control of the operating parameters (geometrical and kinematical) to realise adequate coatings, without cav…

0209 industrial biotechnologyMaterials science[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]02 engineering and technologyWeldingengineering.materiallaw.invention020901 industrial engineering & automationCoatinglawMaterials ChemistryComposite materialDiodeHigh power lasersSurfaces and InterfacesGeneral ChemistryFactorial experiment021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserCladding (fiber optics)Surfaces Coatings and FilmsPower diodeengineering[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technology
researchProduct

Through-transmission laser welding of polymers – temperature field modeling and infrared investigation

2007

The purpose of the present study is to estimate the weldability of a polymeric material couple according to their thermal and optical properties. A first model based on Mie theory and Monte Carlo method describes the laser beam behavior in semi-transparent media and makes it possible to approximate the laser power distribution at the interface of the two materials. A second model based on finite element method permits the temperature field estimation into both parts to be welded. The results are validated by infrared thermography.

0209 industrial biotechnologyMaterials sciencebusiness.industryMie scatteringMonte Carlo methodWeldabilityLaser beam welding02 engineering and technologyWelding021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsFinite element methodElectronic Optical and Magnetic Materialslaw.invention020901 industrial engineering & automationOpticslawThermographyLaser power scaling0210 nano-technologybusinessInfrared Physics & Technology
researchProduct

Laser-assisted narrow gap arc welding of an 18MND5 steel thick plate

2020

Abstract Narrow gap arc welding is a common solution for the welding of thick structures. In this study, a defocused laser beam is used to pre-melt the narrow gap walls in front of an arc-welding bath. Such a welding configuration can be referred to a hybrid welding configuration. In the present work, a particular attention is given to evaluation of the interaction between an arc plasma and a defocused laser beam. High-speed imaging of the metal transfer through arc plasma is achieved thanks to a diode laser illumination system. Electrical arc parameters are logged, synchronously, in order to perform a correlation analysis and to make a diagnosis of the interaction level between laser beam …

0209 industrial biotechnologyMaterials sciencebusiness.industryPhysics::Optics02 engineering and technologyWeldingPlasma010501 environmental sciencesLaser assisted01 natural scienceslaw.inventionArc (geometry)Electric arc[SPI]Engineering Sciences [physics]020901 industrial engineering & automationOpticslawNarrow gapPhysics::Accelerator PhysicsGeneral Earth and Planetary SciencesArc weldingbusiness0105 earth and related environmental sciencesGeneral Environmental ScienceDiodeProcedia CIRP
researchProduct

Aluminum to titanium laser welding-brazing in V-shaped grooveI

2017

International audience; Laser assisted joining of AA5754 aluminum alloy to T40 titanium with use of Al-Si filler wires was carried out. Continuous Yb:YAG laser beam was shaped into double spot tandem and defocalized to cover larger interaction zone in V shaped groove. Experimental design method was applied to study the influence of operational parameters on the tensile properties of the joints. Microstructure examination and fractography study were carried out to understand the relation between local phase content and fracture mode.Within defined window of operational parameters, statistically important factors that influenced the strength of T40 to AA5754 joints in V groove configuration w…

0209 industrial biotechnologyMatériaux [Sciences de l'ingénieur]Materials science[ SPI.MECA ] Engineering Sciences [physics]/Mechanics [physics.med-ph][ SPI.MAT ] Engineering Sciences [physics]/MaterialsFractography02 engineering and technologyIndustrial and Manufacturing Engineering[SPI.MAT]Engineering Sciences [physics]/Materials020901 industrial engineering & automationUltimate tensile strengthBrazingTitanium alloysJoint (geology)Groove (engineering)Filler metalMécanique [Sciences de l'ingénieur]MetallurgyMetals and AlloysLaser beam weldingTitanium alloy[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]021001 nanoscience & nanotechnologyAluminum alloysComputer Science ApplicationsModeling and SimulationCeramics and CompositesLaser weldingDissimilar metal joint0210 nano-technology
researchProduct

Diode laser welding of ABS: Experiments and process modeling

2009

International audience; The laser beam weldability of acrylonitrile/butadiene/styrene (ABS) plates is determined by combining both experimental and theoretical aspects. In modeling the process, an optical model is used to determine how the laser beam is attenuated by the first material and to obtain the laser beam profile at the interface. Using this information as the input data to a thermal model, the evolution of the temperature field within the two components can be estimated. The thermal model is based on the first principles of heat transfer and utilizes the temperature variation laws of material properties. Corroborating the numerical results with the experimental results, some impor…

0209 industrial biotechnologyProcess modelingMaterials scienceWeldabilityMechanical engineeringFOS: Physical sciences02 engineering and technologySemiconductor laser theory020901 industrial engineering & automationOptics[ PHYS.MECA.THER ] Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]Semitransparent polymersElectrical and Electronic EngineeringDiodebusiness.industryACLLaser beam welding[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology[ SPI.MECA.THER ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph]Atomic and Molecular Physics and OpticsExperimental designElectronic Optical and Magnetic Materials[ CHIM.MATE ] Chemical Sciences/Material chemistryHeat transfer[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph][SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph]Laser welding0210 nano-technologyReduction (mathematics)Material propertiesbusinessPhysics - OpticsOptics (physics.optics)
researchProduct